18 resultados para Aging parents
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.
Resumo:
The age-strengthening 2024 aluminum alloy was modified by a combination of plasma-based ion implantation (PBII) and solution-aging treatments. The depth profiles of the implanted layer were investigated by X-ray photoelectron spectroscopy (XPS). The structure was studied by glancing angle X-ray diffraction (GXRD). The variation of microhardness with the indenting depth was measured by a nanoindenter. The wear test was carried on with a pin-on-disk wear tester. The results revealed that when the aluminum alloys were implanted with nitrogen at the solution temperature, then quenched in the vacuum chamber followed by an artificial aging treatment for an appropriate time, the amount of AIN precipitates by the combined treatment were more than that of the specimen implanted at ambient temperature. Optimum surface mechanical properties were obtained. The surface hardness was increased and the weight loss in a wear test decreased too.
Resumo:
We compared early stages of face processing in young and older participants as indexed by ERPs elicited by faces and non-face stimuli presented in upright and inverted orientations. The P1 and N170 components were larger in older than in young participant
Resumo:
Human perception of speed declines with age. Much of the decline is probably mediated by changes in the middle temporal (MT) area, an extrastriate area whose neural activity is linked to the perception of speed. In the present study, we used random-dot pa
Resumo:
考察了陈化温度对新癸酸钕(简称Nd)、氢化二异丁基铝(简称Al)和氯化二异丁基铝(简称Cl)组成的催化剂共聚合丁二烯-异戊二烯的影响。结果表明,催化剂的陈化温度对聚合产物的相对分子质量分布有明显的影响,采用较高陈化温度(50℃)所得催化剂,在催化剂3组分的加入顺序为Al、Cl、Nd或Cl、Nd、Al时,可获得窄相对分子质量分布(小于3.00)共聚物;催化剂3组分的加入顺序和陈化温度对共聚物的微观结构影响不大,2种单体单元的顺式-1,4-结构摩尔分数均在98%以上
Resumo:
The Mg-8Gd-0.6Zr-xHo (x = 1, 3 and 5, mass%) alloys were prepared by casting technology, and structures, aging strengthening mechanism and mechanical properties of the alloys were investigated. The age behaviors and the mechanical properties are improved by adding Ho addition. The structures of the alloys are characterized by the present of rosette-shaped equiaxed grains. The peak hardness value of the Mg-8Gd-0.6Zr-3Ho alloy is 100 Hv, which is about 30% higher than that of Mg-8Gd-0.6Zr alloy.
Resumo:
Finding a Suitable plasticizer for polylactide (PLA) is necessary to overcome its brittleness and enlarge its range of applications. In this study, commercial PLA was melt-blended with a new plasticizer, an ethylene glycol/propylene glycol random copolymer [poly(ethylene glycol-co-propylene glycol) (PEPG)] with a typical number-average molecular weight of 1.2 kDa and an ethylene glycol content of 78.7 mol %. The thermal properties, crystallization behavior, and mechanical properties of the quenched blends and the properties of the blends after storage for 2 months under the ambient conditions were investigated in detail. The advantage of using PEPG is that it does not crystallize at room temperature and has good compatibility with PLA. The quenched PLA/PEPG blends were homogeneous and amorphous systems. With an increase in the PEPG content (5-20%), the glass-transition temperature, tensile strength, and modulus of the blends decreased, whereas the elongation at break and crystallizability increased dramatically. The cold crystallization of PLA resulted in phase separation of the PLA/PEPG blends by annealing of the blends at the crystallization temperature.
Resumo:
The influence of physical aging on the tensile fracture behavior of notched Polyphenylquinoxaline (PPQ-E) samples has been studied. The dependence of fracture stress and strain on physical aging has been explained. The glass transition temperature (T-g) and the endothermic peak at the end of T-g transition with different physical aging were characterized using differential scanning calorimetry (DSC) and the results have also been explained. The morphology of fracture surface was observed by scanning electron microscopy (SEM). (C) 2000 John Wiley & Sons, Inc.
Resumo:
Physical aging of poly(aryl ether ether ketone ketone) (PEEKK) has been investigated. Heat flow responses were measured after annealing the amorphous samples obtained by quenching the melt into an ice-water bath close to, but below, the glass transition temperature. The extent of aging is related to the supercooling from the glass transition temperature and to the aging time. The activation energy of the aging process, which was estimated by a Williams-Watt expression, is similar in magnitude to that obtained for the cold crystallization for the aged samples. The quenched glass is a metastable glass. The conformation of molecular chains rearranges with physical aging which results in the formation of a denser packing in the amorphous phase. The dense amorphous phase may form an initial nucleus for crystallization. Isothermal cold crystallization of the aged samples was carried out. The Avrami equation was used to determine the kinetic parameters, and the Avrami constant n is about 2. An Arrhenius expression was used to evaluate the activation energy of relaxation upon physical aging and the activation energy of transportation upon isothermal crystallization. The activation energy of relaxation is similar in magnitude to that of crystallization for aged samples. Results obtained are interpreted as kinetic effects associated with the glass formation process.
Resumo:
The effect of accelerated weather aging an ethylene-propylene-diene monomer(EPDM) rubber used for outdoor insulation was studied by surface roughness measurement and X-ray photoelectron spectroscopy(xps). The surface roughness of EPDM rubber changed with aging time. The surface oxygen and aluminum content were found to increase and that of carbon, silicon and nitrogen to decrease with time. The detailed XPS analysis indicated that the concentration of carbon in C-C decreased and that of highly oxidized carbons in C-O, C=O and O=C-O increased with time, which was due to the oxidation of EPDM rubber polymer. The appearance of O=C-O on the surface of EPDM rubber was a signal that EPDM rubber became aged. The aging speed decreased with time. The aging mechanism is discussed also.
Resumo:
Physical aging of poly(aryl ether ether ketone ketone) (PEEKK) was investigated. Heat flow responses were measured after annealing the amorphous samples that were obtained by quenching the melt into an ice-water bath at just below the glass transition temperature. Isothermal cold crystallization of the aged samples was carried out. The Avrami equation was used to determine the kinetic parameters, and the Avrami constant it is about 2. An Arrhenius form was used to evaluate the relaxation activation energy of physical aging and the transport activation energy of isothermal crystallization. The activation energy of physical aging was similar in magnitude to that observed for the temperature dependence of crystallization under conditions of transportation control. Results obtained were interpreted as purely kinetic effects associated with the glass formation process. (C) 1998 John Wiley & Sons, Inc.