120 resultados para Adhesion Molecule

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several "inside-out" signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Our results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its alpha 7 helix. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhesion molecule, galectin, it became clear that the sequences of sponge cell surface receptors and of molecules forming the intracellular signal transduction pathways triggered by them, share high similarity with those identified in other metazoan phyla. These studies demonstrated that all metazoan phyla, including Porifera, originate from one common ancestor, the Urmetazoa. The sponges evolved prior to the Ediacaran-Cambrian boundary (542 million years ago [myr]) during two major "snowball earth events", the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the ocean was richer in silica due to the silicate weathering. The oldest sponge fossils (Hexactinellida) have been described from Australia, China and Mongolia and are thought to have existed coeval with the diverse Ediacara fauna. Only little younger are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It has been proposed that only the sponges possessed the genetic repertoire to cope with the adverse conditions, e.g. temperature-protection molecules or proteins protecting them against ultraviolet radiation. The skeletal elements of the Hexactinellida (model organisms Monorhaphis chuni and Monorhaphis intermedia or Hyalonema sieboldi) and Demospongiae (models Suberites domuncula and Geodia cydonium), the spicules, are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central axial canal and an axial filament which harbors the silicatein. After intracellular formation of the first lamella around the channel and the subsequent extracellular apposition of further lamellae the spicules are completed in a net formed of collagen fibers. The data summarized here substantiate that with the finding of silicatein a new aera in the field of bio/inorganic chemistry started. For the first time strategies could be formulated and experimentally proven that allow the formation/synthesis of inorganic structures by organic molecules. These findings are not only of importance for the further understanding of basic pathways in the body plan formation of sponges but also of eminent importance for applied/commercial processes in a sustainable use of biomolecules for novel bio/inorganic materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been shown that prenatal light exposure and corticosterone improve memory retention of dark hatched chicks. The object of this study was to explore the neural mechanisms underlying the effect of prenatal light exposure and corticosterone on memory retention of chicks. To detect the effect of different prenatal treatments on memory retention of chicks, we used one-trial passive avoidance model. To examine the expression of glucocorticoid receptor (GR), neural cell adhesion molecule (NCAM), growth-associated protein 43 (GAP-43) and polysialic acid (PSA) in HV and LPO of chick brain, we used immunohistochemical method. Prenatal light exposure and glucocorticoid (corticosterone, dexamthesone) administered in embryonic day 20 (E20) markedly improve memory retention in dark hatched chicks. Light plays a critical role in improving memory. The critical exposure period is E19 and E20. The effect of these two hormones and light exposure can be significantly blocked by their receptor antagonist administration respectively. The light, corticosterone and particularly darkness significantly up-regulated the level of GR; the expression of NCAM and GAP-43 in HV and LPO peaked in E20 in normal hatched chicks and was significantly increased by light exposure and corticosterone. Protein synthesis inhibitor anisomycin markedly reduced the effect of light exposure but partially reduced the effect of corticosterone; light exposure and corticosterone in E20 significantly up-regulated PSA expression. Removing PSA from NCAM significantly retarded the effect of corticosterone on memory retention in chicks. Therefore, The effects of prenatal light exposure and corticosterone on memory retention are mediated via both corticosteroid receptors. The effects of both prenatal light and corticosterone might at first change the plasticity of the brain by up-regulation the synthesis and modification of proteins, and then influence the behavior performance of the chicks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterodimerization of integrin Mac-1 (alpha(M) beta(2)) Subunits plays important role on regulating leukocytes adhesion to extracellular matrix or endothelial cells. Here, using total internal reflection microscopy, we investigated the heterodimerization of integrin Mac-1 subunits at the single-molecule level in live cells. Individual alpha(M) subunit fused to the enhanced yellow fluorescent protein (eYFP) was imaged at the basal plasma membrane of live Chinese hamster ovary (CHO) cells. Through analysis of mean square displacement (MSD), diffusion coefficient, the size of restricted domain and fraction of molecules undergoing restricted diffusion, we found that as compared with the diffusion in the absence of beta(2) subunit, the diffusion of single-molecule of alpha(M)-YFP was suppressed significantly in the presence of beta(2) subunit. Thus, based on the oligomerization-induced trapping model, we suggested that in the presence of beta(2) subunit, the am subunit may form heterodimer with it. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

细胞在材料表面的黏附对细胞的增殖和分化起重要作用。格式化表面提供了对细胞在基底的空间分布和动附进行控制的方法。利用微制作形成的格式模板,分别以微接触转印法和微流道法形成格式化表面,使MC3T3-E1成骨细胞以一定的格式黏附于表面上。在微接触转印法形成的含二氯二甲基硅烷(DMS)的疏水区域和不含DMS的亲水区域相间隔的表面,细胞优先在亲水区域黏附。在微流道法形成的胶原和白蛋白格式化表面,细胞优先黏附于含胶原区域。结果还表明微格式化表面可以用于研究表面的物理化学性质对细胞的黏附等功能的影响。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review is presented of the mechanics of microscale adhesion in microelectromechanical systems (MEMS). Some governing dimensionless numbers such as Tabor number, adhesion parameter and peel number for microscale elastic adhesion contact are discussed in detail. The peel number is modified for the elastic contact between a rough surface in contact with a smooth plane. Roughness ratio is introduced to characterize the relative importance of surface roughness for microscale adhesion contact, and three kinds of asperity height distributions are discussed: Gaussian, fractal, and exponential distributions. Both Gaussian and exponential distributions are found to be special cases of fractal distribution. Casimir force induced adhesion in MEMS, and adhesion of carbon nanotubes to a substrate are also discussed. Finally, microscale plastic adhesion contact theory is briefly reviewed, and it is found that the dimensionless number, plasticity index of various forms, can be expressed by the roughness ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the relationship between the pull-off force and the transition parameter (or Tabor number) as well as the variation of the pull-off radius with the transition parameter in the adhesion elastic contact. Hysteresis models are presented to describe the contact radius as a function of external loads in loading and unloading processes. Among these models, we verified the hysteresis model from Johnson{Kendall{Roberts theory, based on which the calculated results are in good agreement with experimental ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three models, JKR (Johnson, Kendall and Roberts), DMT (Derjaguin, Muller, and Toporov) andMD (Maugis-Dugdale),are compared with the Hertz model in dealing with nano-contact problems. It has been shown that both the dimensionless load parameter, P D P=.1/4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three adhesion contact models, JKR (Johnson-Kendall-Roberts), DMT (Derjaguin-Muller-Toporov) and MD (Maugis-Dugdale) are compared with the Hertz model in dealing with the nano-contact problems. It has been shown that the dimensionless load parameter, $\bar{P}=P/(\pi\Delta\gamma R)$, and the transition parameter, $\Lambda$, have significant influences on the contact stiffness (contact area) at micro/nano-scale and should not be ignored in shallow nanoindentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

考虑实际微结构表面粗糙度对粘着特性的影响,利用表面力以及表征微尺度粘着弹性接触理论的粘着数对微机械中典型的微悬臂梁结构的剥离数(peel number)进行修正。结果表明,由于表面粗糙度的存在,微结构中的粘着作用削弱,而这种作用可以利用粘着参数(adhesion parameter)定量刻画。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.