113 resultados para Additively representable linear orders
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Ultrashort light-matter interactions between a linear chirped pulse and a biased semiconductor thin film GaAs are investigated. Using different chirped pulses, the dependence of infrared spectra on chirp rate is demonstrated for a 5 fs pulse. It is found that the infrared spectra can be controlled by the linear chirp of the pulse. Furthermore, the infrared spectral intensity could be enhanced by two orders of magnitude via appropriately choosing values of the linear chirp rates. Our results suggest a possible scheme to control the infrared signal.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expres
Resumo:
Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot’s poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.
Resumo:
By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether the Oliver-Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer questions raised in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.
Resumo:
Classical theories have successfully provided an explanation for convection in a liquid layer heated from below without evaporation. However, these theories are inadequate to account for the convective instabilities in an evaporating liquid layer, especially in the case when it is cooled from below. In the present paper, we study the onset of Marangoni convection in a liquid layer being overlain by a vapor layer.A new two-sided model is put forward instead of the one-sided model in previous studies. Marangoni-Bénard instabilities in evaporating liquid thin layers are investigated with a linear instability analysis. We define a new evaporation Biot number, which is different from that in previous studies and discuss the influences of reference evaporating velocity and evaporation Biot number on the vapor-liquid system. At the end, we explain why the instability occurs even when an evaporating liquid layer is cooled from below.
Resumo:
基于伪随机数生成技术促生白噪声扰动,以高精度迎风/对称紧致混合差分算法求解二维/三维非定常可压Navier-Stokes方程,揭示了可压自由剪切层初始剪切过程中扰动的线性演化特征,以及该过程对扰动波数和方向的内在选择性.验证了所用算法的有效性,表明线性理论同数值模拟相结合是可压剪切层研究的合理途径之一.
Resumo:
This paper explores the potential of the piecewise linear vibration absorber in a system subject to narrow band harmonic loading. Such a spring is chosen because the design of linear springs is common knowledge among engineers. The two-degrees-of-freedom system is solved by using the Incremental Harmonic Balance method, and response aspects such as stiffness crossing frequency and jump behaviour are discussed. The effects of mass, stiffness, natural frequency ratios, and stiffness crossing positions on the suppression zone are probed. It is shown that a hardening absorber can deliver a wider bandwidth than a linear one over a range of frequencies. The absorber parameters needed to produce good designs have been determined and the quality of the realized suppression zone is discussed. Design guidelines are formulated to aid the parameter selection process.
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Resumo:
A linear stability analysis is applied to determine the onset of oscillatory thermocapillary convection in cylindrical liquid bridges of large Prandtl numbers (4 <= Pr <= 50). We focus on the relationships between the critical Reynolds number Re-c, the azimuthal wave number m, the aspect ratio F and the Prandtl number Pr. A detailed Re-c-Pr stability diagram is given for liquid bridges with various Gamma. In the region of Pr > 1, which has been less studied previously and where Re, has been usually believed to decrease with the increase of Pr, we found Re-c exhibits an early increase for liquid bridges with Gamma around one. From the computed surface temperature gradient, it is concluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic axisymmetric thermocapillary convection at large Prandtl number, and that the stability property of the basic flow is determined by the "effective" part of liquid bridge. (c) 2008 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear theory of an intermediate pressure discharge column in a magnetic field is presented. Motion of the neutral gas is considered. The continuity and momentum transfer equations for charged particles and neutral particles are solved by numerical methods. The main result obtained is that the rotating velocities of ionic gas and neutral gas are approximately equal. Bohm's criterion and potential inversion in the presence of neutral gas motion are also discussed.