6 resultados para Adaptive feeding behaviour
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Experiments were conducted to identify the rules of the individual sense organs in the feeding behaviour of Chinese perch Siniperca chuatsi by determining the consumption of natural food after selective removal or blocking of eyes, lateral lines and olfactory organs, and also by observing the behavioural response to visual, mechanical and chemical stimulation by artificial prey. Chinese perch were able to feed properly on live prey fish when either eyes or lateral lines were intact or functional, but could scarcely feed without these two senses. Chinese perch recognized its prey by vision through the perception of motion and shape, and showed a greater dependence on vision in predation when both visual and mechanical cues were available. Chemical stimulation by natural food could not elicit any feeding response in Chinese perch, and gustation was only important to the fish for the last stage of food discrimination in the oropharyngeal cavity. The sensory basis of Chinese perch in feeding is well adapted to its nocturnal stalking hunting strategy. and also explains its peculiar food habit of accepting live prey fish only and refusing dead prey fish or artificial diets. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
Tank-reared Japanese flounder larvae, Paralichthys olivaceus, had a major feeding peak in the morning and a secondary peak in the afternoon throughout the larval development, with light being the primary factor regulating their feeding activity. The larvae consumed rotifers in preference to Artemia for up to 10 days, after which the food preference shifted to Artemia. Feeding rates of the larvae prior to 10 days post-batch depended on prey density, but in the old larvae, feeding rates were independent of prey density. Maximum feeding rate occurred at 19 degrees C. The occurrence of the attack posture, after its onset at first feeding (2 days post-hatch), increased up to 25 days, began to decrease when the larvae prepared to settle down, then disappeared after settlement. The occurrence frequency of the attack posture was positively related to fish density, but inversely related to starvation duration, and occurred most frequently at 19 degrees C. This posture depended on prey density in larvae prior to 10 days post-hatch, but became independent of prey density as the larvae developed. It was obvious that, for flounder larvae, attack posture was a behavioural character closely related to feeding and subject to larval development and environmental factors. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
Of the present estimated world population of 14.2 million yaks, approximately 13.3 million occur within Chinese territories (Food and Agriculture Organization of the United Nations, 2003). Although there is an extensive bibliography covering the species, few studies have been conducted in the area of foraging behaviour. The present study was conducted at pasture during the spring, transitional, summer and winter seasons to determine the daily temporal patterns of grazing and ruminating behaviour by yaks. During each study period, two 24 h recordings were undertaken with each of six mature dairy yaks. One study period was conducted on each of the transitional, summer and winter pastures, whereas, due to the considerable changes occurring in the morphology of the spring pasture, three separate studies were completed during March, April and May. During the second of these studies (April), the effect of level of concentrate supplementation on grazing and ruminating behaviour was also examined. Behaviour recordings were made using solid-state behaviour recorders. Short-term intake rates (IR, g min(-1)) were calculated by weighing yaks before and after approximately 1 h of grazing, retaining the faeces and urine excreted and applying a correction for insensible weight loss. Yaks spent less time grazing during the dry season (the early period on the spring pasture) compared with the later green swards (the later period on the spring pasture, the transitional pasture and the summer pasture) (P < 0.05). When the forage quality improved, but there was still insufficient mass (the later period on the spring pasture), the yaks extended their grazing time at the expense of other activities. During the early periods on the spring pasture, the short-term IR by yaks was up to 53 g DM min(-1), significantly higher than at other times (P < 0.05). The level of concentrate offered had little or no effect on grazing or ruminating time. The total eating time of the yaks offered 0.5 or 1.0 kg concentrate was 2.9 and 4.5 h day(-1) respectively, significantly lower than unsupplemented yaks (6.8 h) (P < 0.05). In general, yaks can regulate their foraging behaviour according to the changes of sward conditions in order to achieve optimal grazing strategies. (C) 2007 Published by Elsevier B.V.
Resumo:
Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.
Resumo:
The Bohai Sea was the site of the Chinese national GLOBEC programme. During the June 1997 cruises of R/V Science No.1, observations and experiments on zooplankton feeding were conducted. At five 48 h time-series stations the following observations and measurements on zooplankton were carried out: (1) diurnal vertical migration, by collecting samples at different layers every 3 h with a closing net; (2) diurnal feeding rhythms, by gut pigment analysis; and (3) ingestion rate, by both gut pigment analysis and the dilution method. A classification by body size was used to deal with the diversity of species and developmental stages of zooplankton assemblages. Samples were separated into three size groups: small (200-500 mu m), medium (500-1000 mu m) and large (> 1000 mu m). The results showed that the copepods (Calanus sinicus, Paracalanus parvus, Acartia bifilosa and Centropages mcmurrichi) performed clear diurnal vertical migrations. However, their behaviour was different at different stations. The variation in gut pigment content over the 24 h cycle showed strong diurnal feeding rhythms, particularly for the large size group. Gut pigment contents reached their daily maximum during the time from dusk to midnight (18:00-24:00). The peak value was about 10 times the minimum observed in the daytime. The in situ daily grazing rate, based on gut pigment contents and evacuation experiments, was 4.00-12.65 ng chla ind(-1) day(-1) for the small size group, 5.99-66.58 ng chla ind(-1) day(-1) for the medium size group and 31.31-237.13 ng chla ind(-1) day(-1) for the large size group. The copepods consumed only a small part (2.90-13.52%) of the phytoplankton biomass hut about 77% of the daily production. The grazing mortality rate of phytoplankton by microzooplankton (<200 mu m) measured by the dilution method ranged from 0.43 to 0.69 day(-1) The calculated daily consumption of phytoplankton biomass was 35-50%, and 85-319% of the potential production.