2 resultados para Achaean League.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The relationships between ecological diversity and ecosystem functions such as stability and productivity have long been debated and have no final conclusion until now. It is ignored that the debate should be firstly based on the same diversity index, which should be theoretically complete, and on same observation scale. For the issue on the scale of ecotope observation, ecosystems should be distinguished according to intensity of human disturbance. For the issue on the scale of species observation, either number diversity or biomass diversity should be identified. This paper takes grassland ecosystems located within the Bayin Xile grassland of Xilin Gol League of Inner Mongolia Autonomous Region as an example to analyze effects of different diversity indices and spatial scales on the conclusions of ecological diversity and its relationships with ecosystem functions. The analysis results both on the scale of ecotope observation and on the scale of species observation show that different diversity indices might give different conclusions and spatial resolution has a great effect on the relative conclusions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Kunyushan composite granite pluton is located in northeast part of the Sulu UHP collisional belt, Jiaodong peninsula, eastern China. It is regarded as the boundary of the Jiaodong block and the Sulu UHP collisional belt. The body is unique in the Dabieshan-Sulu UHP collisional orogen for its feature of multiple intrusions of diverse types granitoid rocks in a long span after UHP the collision between the North China and the Yangtze plates in late Triassic. It can be grouped into four series on the basis of petrology and petrochemistry. They are mid-K calc-alkaline granitoids, strongly peraluminous granites, high-K calc-alkaline granitoids and syenitic granite of shoshonitic series. In this thesis, the later three types of rocks are investigated geochronologically in detail. The grain zircon U-Pb isotope dilution dating technique has been employed in this study. Zircon morphology are presented and discussion on the chemical and physical conditions of the granite formation have been carried out in addtion. Strongly peraluminous granites comprises foliated monzogranite and garnet bearing leucogranite. They occupy more than half of the area of the Kunyushan composite body. Three zircon samples of foliated monzogranites have been analyzed, they yield lower intercept ages mainly in the range of 140-150 Ma. The formation of these rocks was likely to be at 700-600 ℃, implied by zircon morphology. Two zircon samples of the garnet bearing leucogranite yield lower intercept ages from 130 Ma to 140 Ma. Zircon morphology indicate that the liquidus temperature of the magma was about 750 °C. Syenitic granite of shoshonitic series occur in the north central part of the body, and the volume is quite small contrast to other types. One zircon sample was chosen from this rock, and yield lower intercept age of 121+1.8/-2.1 Ma. Zircon morphology indicate that the liquidus temperature of this rock is up to 900 °C, which is much higher than others'. High-K calc-alkaline granitoids can be divided into two types on the basis of rock texture and structure. One is Kf-porphyritic monzogranite. It's outcrop is quite small. Zircon ages of one sample constrain the emplacement of this rock at about 112 Ma. The other is medium-grain to coarse-grain monzogranite. Zircons from it yield lower intercept age of 100.5+2.9/-4.6 Ma. The variation of zircon morphology suggest that these two monzogranites were outcomes of a single magma at different stage. The former emplaced earlier than the latter. The liquidus temperature of the magma was about 800 ℃ Inherited zircon is ubiquitous in the Kunyushan composite body. Most of the samples yield upper intercept ages of late Proterozoic. It was considered that only the Yangtze plate underwent a crustal growth during late Proterozoic among the two plates which involved into the UHP collision. Inherited zircon of about 200 Ma can also be observed in strongly peraluminous and high-K calc-alkaline granitoids. Two samples out of eight yield upper intercept ages of Achaean.