27 resultados para Academies of swimming
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Alterations in hematological indices such as decreases in blood cell counts (RBC), hematocrit (Ht) and hemoglobin (Hb) concentrations are key symptoms of anemia. However, few experiments were conducted to examine changes in hematological indices of fish exposed to microcystins that are believed to be fatal to circulatory systems of vertebrates. An acute toxicological experiment was designed to study hematological changes of crucian carp injected intraperitoneally (i.p.) with extracted microcystins at two doses, 50 and 200 mu g MC-LReqkg(-1) body weight. After being i.p. injected with microcystins, the fish exhibited behavioral abnormity. There were significant decreases in RBC in the high-dose group, and in Ht and Hb concentrations in both dose groups, while erythrocte sedimentation rate (ESR) significantly increased, indicating the appearance of normocytic anemia. There were no prominent changes in the three red cell indices, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH,), and mean corpuscular hemoglobin concentration (MCHC). Increases in blood urea nitrogen (BUN) and creatinine (CR) in both dose groups suggest the occurrence of kidney impairment. Alteration in blood indices was reversible at the low dose group. Conclusively, anemia induced by kidney impairment was a key factor to cause abnormity of swimming behaviors and high mortality of crucian carp. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Abstract—Burst-and-coast is the most common locomotion type in freely routine swimming of koi carps (Cyprinus carpio koi), which consists of a burst phase and a coast phase in each cycle and mostly leads to a straight-line trajectory. Combining with the tracking experiment, the flow physics of koi carp’s burst-andcoast swimming is investigated using a novel integrated CFD method solving the body-fluid interaction problem. The dynamical equations of a deforming body are formulated. Following that, the loose-coupled equations of the body dynamics and the fluid dynamics are numerically solved with the integrated method. The two burst modes, MT (Multiple Tail-beat) and HT (Half Tail-beat), which have been reported by the experiments, are investigated by numerical simulations in this paper. The body kinematics is predicted and the flow physics is visualized, which are in good agreement with the corresponding experiments. Furthermore, the optimization on the energy cost and several critical control mechanisms in burst-and-coast swimming of koi carps are explored, by varying the parameters in its selfpropelled swimming. In this paper, energetics is measured by the two mechanical quantities, total output power CP and Froude efficiency Fr. Results and discussion show that from the standpoint of mechanical energy, burst-and-coast swimming does not actually save energy comparing with steady swimming at the same average speed, in that frequently changing of speed leads to decrease of efficiency.
Resumo:
Serine proteinase homologues (SPHs), as one of prophenoloxiase-activating factors (PPAFs), play critical roles in innate immunity of crabs. Based on an EST from the eyestalk full length cDNA library, the complete cDNA (designated as PtSPH) and genomic DNA of SPH from the swimming crab Portunus trituberculatus were cloned in this study. The estimated molecular weight of mature PtSPH (354 amino acids) was 38.7 kDa and its isoelectric point was 5.08. Multiple sequence alignment revealed that PtSPH lacked a catalytic residue with a substitution of Ser in the active site triad to Gly. Phylogenetic analysis indicated PtSPH together with PPAFs of Callinectes sapidus (AAS60227), Eriocheir sinensis (ACU65942), Penaeus monodon (ABE03741, ACP19563) and Pacifastacus leniusculus (ACB41380), formed a distinct cluster which only included clip-SPHs. As the first analyzed genomic structure of PPAFs in crustaceans, two introns were found in the open reading frame region of this gene. The mRNA transcripts of PtSPH could be detected in all the examined tissues, and were higher expressed in the eyestalk than that in gill, hepatopancreas, haemocytes and muscle. Accompanied with the change in phenoloxidase (PO) activity and total haemocyte counts, the temporal expression of PtSPH gene in haemocytes after Vibrio alginolyticus challenge demonstrated a clear time-dependent expression pattern with two peaks within the experimental period of 32 h. These findings suggest that PtSPH is involved in the antibacterial defense mechanism of Portunus tritubercualtus crab. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Cetaceans produce sound signals frequently. Usually, acoustic localization of cetaceans was made by cable hydrophone arrays and multichannel recording systems. In this study, a simple and relatively inexpensive towed acoustic system consisting of two miniature stereo acoustic data-loggers is described for localization and tracking of finless porpoises in a mobile survey. Among 204 porpoises detected acoustically, 34 individuals (similar to 17%) were localized, and 4 of the 34 localized individuals were tracked. The accuracy of the localization is considered to be fairly high, as the upper bounds of relative distance errors were less than 41% within 173 m. With the location information, source levels of finless porpoise clicks were estimated to range from 180 to 209 dB re 1 mu Pa pp at 1 m with an average of 197 dB (N=34), which is over 20 dB higher than that estimated previously from animals in enclosed waters. For the four tracked porpoises, two-dimensional swimming trajectories relative to the moving survey boat, absolute swimming speed, and absolute heading direction are deduced by assuming the animal movements are straight and at constant speed in the segment between two consecutive locations.
Resumo:
Critical swimming speeds (U-crit) and morphological characters were compared between the F-4 generation of GH-transgenic common carp Cyprinus carpio and the non-transgenic controls. Transgenic fish displayed a mean absolute U-crit value 22.3% lower than the controls. Principal component analysis identified variations in body shape, with transgenic fish having significantly deeper head, longer caudal length of the dorsal region, longer standard length (L-S) and shallower body and caudal region, and shorter caudal length of the ventral region. Swimming speeds were related to the combination of deeper body and caudal region, longer caudal length of the ventral region, shallower head depth, shorter caudal length of dorsal region and L-S. These findings suggest that morphological variations which are poorly suited to produce maximum thrust and minimum drag in GH-transgenic C. carpio may be responsible for their lower swimming abilities in comparison with non-transgenic controls.
Rapid growth cost in “all-fish” growth hormone gene transgenic carp: Reduced critical swimming speed
Resumo:
Evidence has accumulated that there is a trade-off between benefits and costs associated with rapid growth. A trade-off between growth rates and critical. swimming speed (U-crit) had been also reported to be common in teleost fish. We hypothesize that growth acceleration in the F-3 generation of "all-fish" growth hormone gene (GH) transgenic common carp (Cyprinus carpio L.) would reduce the swimming abilities. Growth and swimming performance between transgenic fish and non-transgenic controls were) compared. The results showed that transgenic fish had a mean body weight 1.4-1.9-fold heavier, and a mean specific growth rate (SGR) value 6%-10% higher than the controls. Transgenic fish, however, had a mean absolute U-crit (cm/s) value 22% or mean relative Ucrit (BL/s) value 24% lower than the controls. It suggested that fast-growing "all-fish" GH-transgenic carp were inferior swimmers. It is also supported that there was a trade-off between growth rates and swimming performance, i.e. faster-growing individuals had lower critical swimming speed.
Resumo:
A preliminary study was carried out to investigate diurnal changes of behavior of three, one adult mate, one adult female, and one juvenile female, Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) in captivity. The respiration and behavior of the porpoises were recorded for 222 hr across 42 days. Behavioral data were recorded for eight general categories: aerial display and fast swimming, begging for fish, playing, nonsexual socializing, sexual behavior, resting, rubbing, and miscellaneous (i.e., other behaviors not included in the above categories). Each behavioral category was scored using one-zero sampling with 10-min intervals. The adult male showed shorter mean respiratory intervals at night (19:00-7:00 h), whereas the mean respiratory intervals of the females were shorter during the day (7:00-19:00 h). Begging for fish of all individuals, playing of the juvenile female, nonsexual socializing, and miscellaneous behavior of the adult female and resting of the male were observed more easily in the day, and aerial display and fast swimming of the adults and resting of the females were observed more easily at night. No significant diurnal difference was found, however, in the remaining categories of each individual. Each of the three porpoises therefore showed a distinct diurnal pattern, but none was obviously more active in the daytime than during the nighttime. Results suggest that daytime-only feeding schedules may be insufficient to meet the energetic needs of marine mammals that show a 24-hr activity cycle, and that nighttime feeding may be a worthwhile addition to husbandry routines.
Resumo:
Small fish abundance is usually high in heavily vegetated habitats in Yangtze lakes, China. Visual and swimming barriers created by dense macrophytes beds could reduce feeding efficiency and growth of small fishes. We tested the hypothesis that small fishes in habitats with dense macrophytes would show decreased feeding efficiency and reduced growth rates by comparing feeding efficiency (measured as the relative weight of fore-gut contents), total length, and condition factor of four small young-of-the-year fishes collected in the near-shore (heavily vegetated) and central (less vegetated) areas of Liangzi Lake. Feeding efficiency, total length, or condition factor were each significantly reduced in the near-shore area compared with the central area for Ctenogobius giurinus, Pseudorasbora parva and Carassius auratus auratus. This supports our hypothesis that vegetation abundance may mediate feeding efficiency and growth of small fishes. Although Hypseleotris swinhonis did not show significant decreases in feeding efficiency or growth in the near-shore area, there was not any reversed tendency, i.e. increased feeding rate or growth in the near-shore area compared to the central area.
Resumo:
Detecting objects in their paths is a fundamental perceptional function of moving organisms. Potential risks and rewards, such as prey, predators, conspecifics or non-biological obstacles, must be detected so that an animal can modify its behaviour accordingly. However, to date few studies have considered how animals in the wild focus their attention. Dolphins and porpoises are known to actively use sonar or echolocation. A newly developed miniature data logger attached to a porpoise allows for individual recording of acoustical search efforts and inspection distance based on echolocation. In this study, we analysed the biosonar behaviour of eight free-ranging finless porpoises (Neophocaena phocaenoides) and demonstrated that these animals inspect the area ahead of them before swimming silently into it. The porpoises inspected distances up to 77 in, whereas their swimming distance without using sonar was less than 20 in. The inspection distance was long enough to ensure a wide safety margin before facing real risks or rewards. Once a potential prey item was detected, porpoises adjusted their inspection distance from the remote target throughout their approach.
Resumo:
The off-axis sonar beam patterns of eight free-ranging finless porpoises were measured using attached data logger systems. The transmitted sound pressure level at each beam angle was calculated from the animal's body angle, the water surface echo level, and the swimming depth. The beam pattern of the off-axis signals between 45 and 115 (where 0 corresponds to the on-axis direction) was nearly constant. The sound pressure level of the off-axis signals reached 162 dB re 1 mPa peak-to-peak. The surface echo level received at the animal was over 140 dB, much higher than the auditory threshold level of small odontocetes. Finless porpoises are estimated to be able to receive the surface echoes of off-axis signals even at 50-m depth. Shallow water systems (less than 50-m depth) are the dominant habitat of both oceanic and freshwater populations of this species. Surface echoes may provide porpoises not only with diving depth information but also with information about surface direction and location of obstacles (including prey items) outside the on-axis sector of the sonar beam. 2005 Acoustical Society of America.
Resumo:
We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150 cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130 cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50-105 cm), and migrated downstream at night during days 10-16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20-30 cm above the bottom during most days, and during days 12-34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo-larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo-larva migration style of Amur sturgeon is unique among Acipenser yet studied.
Resumo:
The authors made 39 surveys (a total of 161 days) in the Tian-e-Zhou Oxbow of the Yangtze River, China, for observing 13 Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) captured from the main stream of the Yangtze River and 7 juveniles born in the oxbow from January 1997 to July 2000. The animals were usually divided into several "core" groups and moved around in shallow, muddy-bottom areas with the largest individual in the lead. Each core group was composed of 2-3 animals (either 2 adults, 1 adult and 1 juvenile, 2 adults and 1 juvenile, or 2 adults and 1 calf). Newly-released animals joined the other animals first, and then reorganized their own groups one or two days later. Average breath interval was 34.4 s (+/- s.d. 4.39) for individuals in the group. The animals mated from May through June and gave birth during the second and last ten days of April of the next year. The gestation period was estimated as 310 - 320 days. Calves over 5 months old began to eat small fish. The distance of calves swimming apart from their suspected mothers increased each month. These findings will help in the management of the reserve to protect this unique freshwater porpoise.
Resumo:
The Chinese sturgeon, Acipenser sinensis, is an anadromous protected species that presently only spawns in the Yangtze River. Using laboratory experiments, we examined the behavioral preference of young Chinese sturgeon to physical habitat (water depth, illumination intensity, substrate color, and cover) and monitored their downstream migration. Hatchling free embryos were photopositive, preferred open habitat, and immediately upon hatching, swam far above the bottom using swim-up and drift. Downstream migration peaked on days 0-1, decreased about 50% or more during days 2-7, and ceased by day 8. Days 0-1 migrants were active both day and night, but days 2-7 migrants were most active during the day. After ceasing migration, days 8-11 embryos were photonegative, preferred dark substrate and sought cover. Free embryos developed into larvae and began feeding on day 12, when another shift in behavior occurred-larvae returned to photopositive behavior and preferred white substrate. The selective factor favoring migration of free embryos upon hatching and swimming far above the bottom may be avoidance of benthic predatory fishes. Free embryos, which must rely on yolk energy for activity and growth, only used 19 cumulative temperature degree-days for peak migration compared to 234 degree-days for growth to first feeding larvae, a 1 : 12 ratio of cumulative temperature units. This ratio suggests that sturgeon species with large migratory embryos, like Chinese sturgeon, which require a high level of energy to swim during migration, may migrate only a short time to conserve most yolk energy for growth.
Resumo:
The swimming of a fish-like body is numerical simulated. The wake structures consist of a series of hairpin-like vortices braided together. The caudal fins generated vorticity interacts constructively with the body-bounded vorticity.