32 resultados para API (Application Programming Interface)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
在实际中对C代码进行API一致性检验的过程中发现,API(application programming interface)规范大都涉及以数值为论域的时序性质与在静态分析过程中所能获取的以变量符号为占位符的独立语义之间存在分析上的缺口.在仔细考察c代码变量符号间等值关系的基础上,给出基于值等价类空间的等值分析方法.这种流相关的分析方法不仅可以在API一致性检验的过程中维护变量符号域和数值域之间的对应关系,而且由于能够屏蔽等值关系以外的其他信息,还可以为后继分析的优化提供有力的支持.
Resumo:
Under the auspices of the 'knowledge-Innovation Program' of CAS, Institute of Geology and Geophysics has established the Broadband Seismic Laboratory. A new kind of 24-bit high-resolution seismograph DAS24-3B has been designed and manufactured in an effort of developing China's own technology of seismic array. Since these instruments will primarily be used in field operation, there is a need to optimize the system software of data acquisition system (DAS) to enhance its stability, compatibility and maintenance. The design ideas of the system software of DAS24-3B are partly learned from the advanced DAS 72A-08. In this system there are two exclusive communication programs DNAPI-COM1 and DNAPI-LPT1, which are suitable for all standard industrial computers with ECP parallel port and serial port. By these exclusive parallel and serial communication interface the system software is split into three parts, acquisition program, user's control program and graphical display program, which can function well in separate units and can run correctly in whole. The three parts of DAS24-3B's system software possess different functions and advantages. The function of acquisition program is to control the process of seismic data acquisition. DAS24-3B system reduced its power and harddisk read-write disturbance by using the extended memory attached to its CPU, which functions as enlarging the data buffer of system and lessening the times of harddisk read-write operations. Since GPS receiver of DAS is strongly sensitive to the around environment and has the possibility of signal loss the acquisition program has been designed with the ability to automatically trail the GPS locked time. The function of user's controlling program is to configure the system's work environment, to inform the user's commands to DAS, to trail the status of DAS in real-time. The function of graphical display program is to illustrate data in figures, to convert data file into some common formatted file, to split data file in parts and combine data files into one. Both user's control program and graphical display program are API (Application Programming Interface) in window 95/98 system. Both possess the features of clearness and friendship by use of all kind of window controls, which are composed by menu, toolbar, statusbar, dialogue box, message box, edit box, scrollbar, time control, button and so on. Two programs of systemic exception handles are provided to treat the trouble in field. The DAS24-3B DAS has been designed to be easier to use-better ability, more stable and simpler. It has been tested in field and base station and has been proved more suitable for field operation of seismic array than other native instruments.
Resumo:
本文针对多用户访问Web数据库的过程进行了分析并提出改进思路,然后利用带抑止弧的扩充Petri网对改进后的访问过程进行建模。
Resumo:
In the increasingly enlarged exploration target, deep target layer(especially for the reservoir of lava) is a potential exploration area. As well known, the reflective energy becomes weak because the seismic signals of reflection in deep layer are absorbed and attenuate by upper layer. Caustics and multi-values traveltime in wavefield are aroused by the complexity of stratum. The ratio of signal to noise is not high and the fold numbers are finite(no more than 30). All the factors above affect the validity of conventional processing methods. So the high S/N section of stack can't always be got with the conventional stack methods even if the prestack depth migration is used. So it is inevitable to develop another kind of stack method instead. In the last a few years, the differential solution of wave equation was hold up by the condition of computation. Kirchhoff integral method rose in the initial stages of the ninetieth decade of last century. But there exist severe problems in it, which is are too difficult to resolve, so new method of stack is required for the oil and gas exploration. It is natural to think about upgrading the traditionally physic base of seismic exploration methods and improving those widely used techniques of stack. On the other hand, great progress is depended on the improvement in the wave differential equation prestack depth migration. The algorithm of wavefield continuation in it is utilized. In combination with the wavefield extrapolation and the Fresnel zone stack, new stack method is carried out It is well known that the seismic wavefield observed on surface comes from Fresnel zone physically, and doesn't comes from the same reflection points only. As to the more complex reflection in deep layer, it is difficult to describe the relationship between the reflective interface and the travel time. Extrapolation is used to eliminate caustic and simplify the expression of travel time. So the image quality is enhanced by Fresnel zone stack in target. Based on wave equation, high-frequency ray solution and its character are given to clarify theoretical foundation of the method. The hyperbolic and parabolic travel time of the reflection in layer media are presented in expression of matrix with paraxial ray theory. Because the reflective wave field mainly comes from the Fresnel Zone, thereby the conception of Fresnel Zone is explained. The matrix expression of Fresnel zone and projected Fresnel zone are given in sequence. With geometrical optics, the relationship between object point in model and image point in image space is built for the complex subsurface. The travel time formula of reflective point in the nonuniform media is deduced. Also the formula of reflective segment of zero-offset and nonzero offset section is provided. For convenient application, the interface model of subsurface and curve surface derived from conventional stacks DMO stack and prestack depth migration are analyzed, and the problem of these methods was pointed out in aspects of using data. Arc was put forward to describe the subsurface, thereby the amount of data to stack enlarged in Fresnel Zone. Based on the formula of hyperbolic travel time, the steps of implementation and the flow of Fresnel Zone stack were provided. The computation of three model data shows that the method of Fresnel Zone stack can enhance the signal energy and the ratio of signal to noise effectively. Practical data in Xui Jia Wei Zhi, a area in Daqing oilfield, was processed with this method. The processing results showed that the ability in increasing S/N ratio and enhancing the continuity of weak events as well as confirming the deep configuration of volcanic reservoir is better than others. In deeper target layer, there exists caustic caused by the complex media overburden and the great variation of velocity. Travel time of reflection can't be exactly described by the formula of travel time. Extrapolation is bring forward to resolve the questions above. With the combination of the phase operator and differential operator, extrapolating operator adaptable to the variation of lateral velocity is provided. With this method, seismic records were extrapolated from surface to any different deptlis below. Wave aberration and caustic caused by the inhomogenous layer overburden were eliminated and multi-value curve was transformed into the curve.of single value. The computation of Marmousi shows that it is feasible. Wave field continuation extends the Fresnel Zone stack's application.
Resumo:
In this paper we present a methodology and its implementation for the design and verification of programming circuit used in a family of application-specific FPGAs that share a common architecture. Each member of the family is different either in the types of functional blocks contained or in the number of blocks of each type. The parametrized design methodology is presented here to achieve this goal. Even though our focus is on the programming circuitry that provides the interface between the FPGA core circuit and the external programming hardware, the parametrized design method can be generalized to the design of entire chip for all members in the FPGA family. The method presented here covers the generation of the design RTL files and the support files for synthesis, place-and-route layout and simulations. The proposed method is proven to work smoothly within the complete chip design methodology. We will describe the implementation of this method to the design of the programming circuit in details including the design flow from the behavioral-level design to the final layout as well as the verification. Different package options and different programming modes are included in the description of the design. The circuit design implementation is based on SMIC 0.13-micron CMOS technology.
Resumo:
The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.
Resumo:
In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.
Resumo:
Two-dimensional (2-D) gold networks were spontaneously formed at the air-water interface after HAuCl4 reacted with fructose at 90 degrees C in a sealed vessel, in a reaction in which fructose acted as both a reducing and a protecting agent. Through fine-tuning of the molar ratio of HAuCl4 to fructose, the thus-formed 2-D gold networks can be changed from a coalesced pattern to an interconnected pattern. In the coalesced pattern, some well-defined single-crystalline gold plates at the micrometer-scale could be seen, while in the interconnected pattern, many sub-micrometer particles and some irregular gold plates instead of well-defined gold plates appeared. It is also found that the 2-D gold networks in the form of an interconnected pattern can be used as substrates for surface-enhanced Raman scattering (SERS) because of the strong localized electromagnetic field produced by the gaps between the neighboring particles in the 2-D gold networks.
Resumo:
Uniform platinum nanodendrites have been prepared at a water/oil interface by a facile catalyst-free method at room temperature. This is carried out by introducing NaBH4 into the platinum precursor solution in the presence of the second generation of carboxyl-cored dendrimer ([G-2]-CO2H dendrimer) and toluene to act as a protective agent and a linker, respectively. The average fractal dimension of 1.61 of the obtained platinum nanodendrites is calculated by analysing the transmission electron micrographs using the programs Fractal Dimension Version 1.1 and Fractal Dimension Calculator. Control experiments show that the fabrication of platinum nanodendrites can be operated with a wide parameter window, which undoubtedly raises the degree of control of the synthesis process. The potential application of such a nanostructure as a catalyst is investigated, and the results reveal that they show highly efficient catalytic properties for the typical redox reaction between hexacyanoferrate (III) and thiosulfate ions at 301 K.
Resumo:
In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have developed a new theoretical model based on the MPB4 theory to calculate the differential capacitance of the interface of 0.05mol/L MgSO4 in water and 0.1mol/L TBATPB in nitrobenzene. Our results coincide with the experimental values very well. It indicates that our model may describe well the structure of ITIES not only in the presence of 1:1 electrolyte but also in the presence of 2:2 electrolyte.
Resumo:
The MPB4 theory is used to calculate the differential capacitance of the interface between LiCl in water and TBATPB in 1,2-dichloroethane at electrolyte concentrations of 0.005, 0.01 and 0.02 M. The effects of the ion size and the image force, and the influence of the electrolyte concentration, the surface charge density and the solvent effect on the inner layer potential drop are considered simultaneously. These effects can be ascribed to the ionic penetration into the opposite solution and ion-ion correlations across the interface. Our results are in better agreement with experimental data than those obtained using Gouy-Chapman theory. This indicates that the MPB4 theory may also describe the structure of the water \1,2-dichloroethane interface provided that the influence of the electrolyte concentration, the surface charge density and the solvent effect on the inner layer potential distribution are included in the calculation. Comparison of the theoretical results with those of the water \nitrobenzene interface shows that the structure of the water \1,2-dichloroethane interface is similar to that of the water \nitrobenzene interface, except that in the former case the inner-layer potential drop is much higher and the effects of the image force and the ion size are more pronounced.
Resumo:
We use the MPB4 theory to calculate the differential capacitance of the interface between NaBr + water and tetrabutylammoniumtetraphenyl borate (TBATPB) + nitrobenzene at electrolyte concentrations of 0.01 M, 0.02 M and 0.05 M. In addition to the effects
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.