2 resultados para AKT
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Cooperation of Mtmr8 with PI3K Regulates Actin Filament Modeling and Muscle Development in Zebrafish
Resumo:
Background: It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. Methodology/Principal Findings: Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. Conclusion/Significance: The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.
Resumo:
海洋生态环境的特殊性决定了海洋中往往含有结构奇特、新颖的化学物质, 海洋药物具有药理特异性、高活性和多样性,已成为药物研发热点领域,海洋抗肿瘤药物也是其中之一。卡拉霉素(kalamycin)来源于海洋放线菌M097的聚酮类化合物,我们实验室用体外增殖抑制试验发现了卡拉霉素(kalamycin)的抗肿瘤作用。有报道其类似物lactoquinomycin和frenolicin B是肿瘤靶点AKT抑制剂,并由此推断吡喃萘醌骨架在AKT抑制过程中发挥主要作用,我们发现虽然卡拉霉素(kalamycin)含有吡喃萘醌骨架,但是并不抑制AKT及其下游信号系统;继而对卡拉霉素(kalamycin)的体外抗肿瘤作用及其机理进行了系统的分析。 采用磺酰罗丹明B(SRB)法检测卡拉霉素(kalamycin)对10株肿瘤细胞株的体外增殖抑制作用,结果表明,卡拉霉素(kalamycin)能明显抑制各种组织来源的肿瘤细胞生长,具有广泛的细胞增殖抑制作用,除对一株肺癌细胞A549抑制作用不明显外,对9株肿瘤细胞株的IC50平均值为2.5μM,并且对各个细胞株生长抑制曲线形态基本一致。采用流式细胞术证实,卡拉霉素(kalamycin)能剂量依赖地诱导结肠癌细胞HCT-116和肝癌细胞SMMC-7721发生G2/M期周期阻滞,可以诱导黑色素瘤A375细胞发生凋亡。 基于前人的报道,我们用Western blot方法检测卡拉霉素(kalamycin)对AKT信号系统的影响,用量从1μM增加到16μM,AKT、mTOR和磷酸化AKT、mTOR、GSK3β的总量都没有变化;因此我们判断卡拉霉素(kalamycin)不是通过AKT系统发挥作用,而是有另外的机制。细胞凋亡和周期阻滞的很多过程是和P53相关的,我们用卡拉霉素(kalamycin)对P53野生和缺失的HCT-116细胞的增殖抑制和凋亡诱导来分析该抑制作用是否和P53相关,结果显示卡拉霉素(kalamycin)对两种细胞的生长抑制和诱导凋亡作用无明显差异,其作用和P53途径是不相关的。 卡拉霉素(kalamycin)细胞增殖抑制作用的非选择性,表明该化合物是一个广谱的细胞增殖抑制剂。我们用体外酶反应实验分析了卡拉霉素(kalamycin)对拓扑酶的抑制作用,结果显示卡拉霉素(kalamycin)对Topo I没有抑制作用,在20μM时几乎完全抑制Topo II,呈现出显著的浓度依赖效应,抑制作用大约比VP16强十倍。用DNA伸展实验和Topo II 介导的负超螺旋 pBR322 切割实验,证实卡拉霉素(kalamycin)不是DNA嵌入剂和Topo II毒剂,而是一个催化抑制剂。在体外模拟Topo II的催化反应步骤,把整个过程分解,发现卡拉霉素(kalamycin)可以抑制Topo II介导的DNA的切割,但是对再连接没有作用;卡拉霉素(kalamycin)能抑制ATP水解的作用,但是在较高剂量时抑制作用要比阳性对照弱得多。因此,卡拉霉素(kalamycin)可能主要通过抑制Topo II介导的DNA的切割发挥作用。 肿瘤新血管生成是原发性肿瘤赖以发生、生长和转移的物质基础。我们用了多个新生血管生成模型对卡拉霉素(kalamycin)的抗新生血管生成作用进行了检测,发现卡拉霉素(kalamycin) 对内皮细胞管腔形有抑制作用,其作用效果呈现明显的剂量依赖性。卡拉霉素(kalamycin)在对内皮细胞HMEC-1在12小时内的IC50是4.39μM ,在没有显著增殖抑制作用的剂量下,对HMEC-1管腔形成依然具有抑制作用,提示卡拉霉素(kalamycin)的抗新生血管生成作用并非完全来源于其增殖抑制作用。通过体外酶反应、western blot和双荧光素酶报告基因系统分析卡拉霉素(kalamycin)抑制肿瘤新血管生成的信号途径,结果发现这种抑制作用不是依赖于酪氨酸激酶和HIF-lα途径的。 综上所述,卡拉霉素(kalamycin)不是一个AKT抑制剂,它通过专一性的抑制Topo II使肿瘤细胞发生周期阻滞和细胞凋亡,主要抑制Topo II介导的DNA的切割和ATP水解作用。同时卡拉霉素(kalamycin)可以抑制肿瘤血管管腔形成,抑制作用不依赖酪氨酸激酶和HIF-lα途径。