10 resultados para ACID BACTERIA
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Enzymatic activities and fatty acid methyl esters (FAMEs) in the sediments of two eutrophic lakes in Wuhan city were investigated. The results showed phosphatase and dehydrogenase activities in the lotus zone and plant floating bed zone were significantly lower than those in other sites, and urease activity was the highest where microorganism agents were put in. Fatty acid group compositions indicated the predominance of aerobic bacteria in the surface sediments in shallow lakes. The ratios of FAMEs specific for bacteria and Gram-positive bacteria exibited significant differences between the two lakes. The results of trans to cis indicated that the microorganisms in Lake Yuehu could adapt themselves to environmental stress better. The enzymatic activities and FAMEs showed differences in different sites, indicating that ecological restoration measures and environmental conditions could affect lake sediment to some extent. But the monitoring, work would be done in series to exactly evaluate the effect of the remediation measures.
Resumo:
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.
Resumo:
The effect of acid rain SO42− deposition on peatland CH4 emissions was examined by manipulating SO42− inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha−1 yr−1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m−2 from the controls and (in order of increasing SO42− dose size) 10.7, 13.2, and 9.8 g m−2 from the three SO42− treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42− at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42− from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.
Resumo:
By incorporating bio-specific receptors, such as p-10,12-pentacosadiyne-1-N-(3,6,9-trioxaundecylamide)-alpha-D-mannopyranoside (MPDA), into 10,12-pentacosadiyonic acid (PDA) monolayer, the MPDA/PDA monolayer underwent affinochromatic transition in response to the bacteria binding to the receptor. Here, we described a new method to study the membrane/macromolececular interaction between Escherichia coli (E coli) and mannose and its relative affinochromism by modifying MPDA/PDA with CdS nano-crystallites (MPDA/PDA-CdS). CdS not only triggered the strong tropism of the bacteria but also reduced the rigidity of the MPDA/PDA backbone, resulting in the enhanced affinochromism. This discovery might be of significance in basic biophysical studies of membrane/macromolececular and designing novel biosensor.
Resumo:
Electrospray ionization (ESI) combined with multiple-stage tandem mass spectrometry (MSn) was used to directly analyze the glycolipid mixture from bacteria Bacillus pumilus without preliminary separation. Full scan ESI-MS revealed the composition of picomole quantities of glycerolglycolipid species containing C-14-C-19 fatty acids, some of which were monounsaturated, Two main components were identified from their molecular masses and fragmentation pathways. The fragmentation pathway of the known compound compared with the investigated compound verified the proposed structure as 1(3)-acyl-2-pentadecanoyl-3(1)-O-[beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl]-sn-glycerols. A comparison of the multiple tandem mass spectra of the different alkali-metal cation adducts indicates that the intensity of fragments and the dissociation pathways are dependent on the alkali-metal type, The basic structures of glycerolglycolipids were reflected clearly from the fragmentation patterns of the sodium cations, The intense fragments of the sugar residue from the precursor ions were obtained from the lithiated adduct ions. ESI-MSn spectra of [M + K](+) ions did not provide as much fragmentation as [M + Na](+) and [M + Li](+) adducts, but their spectra allow the position of glycerol acylation to be determined. On the basis of MS2 spectra of[M + K](+) ions, it was established that all components have a C-15:0 fatty acid at the sn-2 position of the glycerol backbone and C-14-C-19 acids at the sn-1 position of the glycerol backbone. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Metallothionein (MT) is a superfamily of cysteine-rich proteins contributing to metal metabolism, detoxification of heavy metals, and immune response such as protecting against ionizing radiation and antioxidant defense. A metallothionein (designated AiMT2) gene was identified and cloned from bay scallop, Argopecten irradians. The full length cDNA of AiMT2 consisted of an open reading frame (ORF) of 333 bp encoding a protein of 110 amino acids. with nine characteristic Cys-X-Cys, five Cys-X-X-Cys, five Cys-X-X-X-Cys and two Cys-Cys motif arrangements and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-x(3)Cys-x-Cys-x(3)-Cys-x-Cys-Arg at the C-terminus. The cloned ANT showed about 50% identity in the deduced amino acid sequence with previously published MT sequences of mussels and oysters. The conserved structural pattern and the close phylogenetic relationship of AiMT2 shared with MTs from other mollusc especially bivalves indicated that AiMT2 was a new member of molluscan MT family. The mRNA transcripts in hemolymph of AiMT2 under cadmium (Cd) exposure and bacteria challenge were examined by real-time RT-PCR. The mRNA expression of AiMT2 was up-regulated to 3.99-fold at 2 h after Listonella anguillarum challenge, and increased drastically to 66.12-fold and 126.96-fold at 16 and 32 h post-challenge respectively. Cadmium ion exposure could induce the expression of AiMT2, and the expression level increased 2.56-fold and 6.91-fold in hemolymph respectively after a 10-day exposure of 100 mu g L-1 and 200 mu g L-1 CdCl2. The sensitivity of AiMT2 to bacteria challenge and cadmium stress indicated it was a new Cd-dependent MT in bay scallop and also regulated by an immune challenge. The changes in the expression of AiMT2 could be used as an indicator of exposure to metals in pollution monitoring programs and oxidative stress, and bay scallop as a potential sentinel organism for the cadmium contamination in aquatic environment. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)-(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter.
Resumo:
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7-8 and at temperature close to 35 degrees C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40-45 degrees C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.
Resumo:
Rel/NF kappa B is a family of transcription factors. In the present study, a Rel/NF kappa B family member, Dorsal homolog (FcDorsal) was cloned from the Chinese shrimp Fenneropenaeus chinensis. The full length cDNA of FcDorsal consists of 1627 bp, revealed a 1071 bp open reading frame encoding 357 aa. The predicted molecular weight (MW)of the deduced amino acid sequence of FcDorsal was 39.78 kDa, and its theoretical pl was 8.85. Amino acid sequence analysis showed that FcDorsal contains a Rel homolog domain (RHD) and an IPT/TIG (Ig-like, plexins and transcriptions factors) domain. The signature sequence of dorsal protein existed in the deduced amino acid sequence. Spatial expression profiles showed that FcDorsal had the highest expression level in the hemocytes and lymphoid organ (Oka). The expression profiles in the hemocytes and lymphoid organ were apparently modulated when shrimp were stimulated by bacteria or WSSV. Both Gram-positive (G(+)) bacteria (Micrococcus lysodeikticus) and Gram-negative (G(-)) bacteria (Vibrio anguillarium) injection to shrimp caused the up-regulation of FcDorsal at the transcription level. DsRNA approach was used to study the function of FcDorsal and the data showed that FcDorsal was related to the transcription of Penaeidin 5 in shrimp. The present data provide clues that FcDorsal might play potential important roles in the innate immunity of shrimp. Through comparison of the expression profiles between FcDorsal and another identified Rel/NF kappa B member (FcRelish) in shrimp responsive to WSSV challenge, we speculate that FcDorsal and FcRelish might play different roles in shrimp immunity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptounclecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-) were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (RI) increased with increasing SRB concentration. A linear relationship between R-ct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7) cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost. and time-saving monitoring of microbial populations. (C) 2009 Elsevier B.V. All rights reserved.