132 resultados para AC to AC converter
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper presents a 2GS/s 10-bit CMOS digital-to-analog converter (DAC). This DAC consists of a unit current-cell matrix for 6MSBs and another unit current-cell matrix for 4LSBs, trading off between the precision and size of the chip. The Current Mode Logic (CML) is used to ensure high speed, and a double Centro-symmetric current matrix is designed by the Q(2) random walk strategy in order to ensure the linearity of the DAC. The DAC occupies 2.2 x 2.2 mm2 of die area, and consumes 790mw at a single 3.3V power supply.
Resumo:
A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, in. The average analog of the in samplings output by the Boxcar enhances the signal-to-noise ratio by root m, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/ root m. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip (SoC) is developed in this paper. For smaller chip size and lower power consumption, the phase to sine mapping data is compressed by using sine symmetry technique, sine-phase difference technique, quad line approximation (QLA) technique and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98 % using the techniques mentioned above. A compact DDFS chip with 32-bit phase storage depth and a 10-bit on-chip digital to analog converter(DAC) has been successfully implemented using standard 0.35um CMOS process. The core area of the DDFS is 1.6mm(2). It consumes 167 mW at 3.3V, and its spurious free dynamic range (SFDR) is 61dB.
Resumo:
This paper presents an 8-bit low power cascaded folding and interpolating analog-to-digital converter (ADC). A reduction in the number of comparators, equal to the number of times the signal is folded, is obtained. The interleaved architecture is used to improve the sampling rate of the ADC. The circuit including a bandgap is implemented in a 0.18-mu m CMOS technology, and measures 1.47 mm X 1.47 mm (including pads). The simulation results illustrate a conversion rate of 1-GSamples/s and a power dissipation of less than 290mW.
Resumo:
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm~2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.
Resumo:
提出了一种多回路测控系统的设计方案。该方案仅使用一个DSP(数字信号处理器)及一个多通道集成的D/A转换器件MAX5307,不仅同时保证了多个测控回路的实时性及控制精度,而且实现简单,成本低廉。文中结合实际系统,给出了其具体的硬件和软件实现。该方法具有广泛的适用性,对类似系统的设计具有参考价值。
Resumo:
目的利用单片机技术设计多路温度测控系统,实现多路温度的测量和控制.方法系统以单片机AT89C52为核心,利用多路转换器和新型数字器件MAX6675构成8路K型热电偶温度测量电路,利用D/A转换器AD7528和驱动电路构成输出电路,实现8路一一对应的闭环温度测量控制.系统软件采用PID控制器.结果实践证明,可根据需要增减系统温度信号采样通道的数目,使用软件抗干扰措施,提高了采样数据的可靠性.简化了输入输出硬件结构,使系统具有低成本高速度和较好的测量控制精度.结论多路温度测控系统作为整机适用于现场测量控制应用,也可作为多路温度控制模块应用在体积小、温度测量精度要求较高的大型系统中.
Resumo:
The seismic data acquisition system is the most important equipment for seismic prospecting. The geophysicists have been paying high attention to the specification of the equipment used in seismic prospecting. Its specification and performance are of great concerned to acquire precisely and accurately seismic data, which show us stratum frame. But, by this time, limited by the technology, most of the Broad-band Seismic Recorder (BSR) for lithosphere research of our country were bought from fremdness which were very costliness and maintained discommodiously. So it is very important to study the seismic data acquisition system.The subject of the thesis is the research of the BSR, several items were included, such as: seismic data digitizer and its condition monitor design.In the first chapter, the author explained the significance of the implement of BSR, expatiated the requirement to the device and introduced the actuality of the BSR in our country.In the second chapter, the collectivity architecture of the BSR system was illustrated. Whereafter, the collectivity target and guideline of the performance of the system design were introduced. The difficulty of the system design and some key technology were analyzed, such as the Electro Magnetic Compatibility (EMC), system reliability technology and so on.In the third chapter, some design details of BSR were introduced. In the recorder, the former analog to digital converter (ADC) was separated from the later data transition module. According to the characteristic of seismic data acquisition system, a set high-resolution 24-bit ADC chip was chosen to the recorder design scheme. As the following part, the noise performance of the seismic data channel was analyzed.In the fourth chapter, the embedded software design of each board and the software design of the workstation were introduced. At the same time the communication protocol of the each module was recommendedAt the last part of this thesis, the advantages and the practicability of the BSR system design were summarized, and the next development items were suggested.
Resumo:
A 1.55-mum laser diode integrated with a spot-size converter was fabricated in a single step epitaxial by using the conventional photolithography and chemical wet etching process. The device was constructed by a conventional ridge waveguide active layer and a larger passive ridge-waveguide layer. The threshold current was 40 mA together with high slope efficiency of 0.24 W/A. The beam divergence angles in the horizontal and vertical directions were as small as 12.0degrees x 15.0degrees, respectively, resulting in about 3.2-dB coupling losses with a cleaved optical fibre.
Resumo:
An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach. The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E-1 sin ω t + E-3 sin 3ω t. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.
Resumo:
Ceramic coatings are produced on aluminum alloy by autocontrol AC pulse Plasma Electrolytic Oxidation (PEO) with stabilized average current. Transient signal gathering system is used to study the current, voltage, and the transient wave during the PEO process. SEM, OM, XRD and EDS are used to study the coatings evolution of morphologies, composition and structure. TEM is used to study the micro profile of the outer looser layer and inner compact layer. Polarization test is used to study the corrosion property of PEO coatings in NaCl solution. According to the test results, AC pulse PEO process can be divided into four stages with different aspects of discharge phenomena, voltage and current. The growth mechanism of AC PEO coating is characterized as anodic reaction and discharge sintering effect. PEO coating can increase the corrosion resistance of aluminum alloy by one order or two; however, too long process time is not necessarily needed to increase the corrosion resistance. In condition of this paper, PEO coating at 60 min is the most protective coating for aluminum alloy substrate. (C) 2008 Elsevier B.V. All fights reserved.
Resumo:
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.
Resumo:
We experimentally study the ac Stark splitting in D2 line of cold Rb-87 atoms. The frequency span between the Autler-Townes doublets is obviously larger than that derived from theoretical calculation. Two physical effects, which increase the effective Rabi frequency, contribute to the splitting broadening. First, atoms tend to distribute in strong lield places of a inhomogeneous red-detuned light field. Second, atoms reabsorb scattered light when they are huge in number and high in density.
Resumo:
A dynamic multichannel incoherent-to-coherent optical converter based on the photorefractive effect of SBN:Ce is described. A number of grating-encoded input images, illuminated by incoherent light, are projected onto the crystal to yield photoinduced phase gratings. Coherent positive replicas of these images are simultaneously reconstructed by a coherent read beam. A simple theoretical description of this converter and corresponding experimental results are presented.