9 resultados para A. elatius cov
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Background: Polymorphisms of CLEC4M have been associated with predisposition for infection by the severe acute respiratory syndrome coronavirus (SARS-CoV). DC-SIGNR, a C-type lectin encoded by CLEC4M, is a receptor for the virus. A variable number tandem
Resumo:
We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.
Resumo:
从SARS免疫抗体库获得的一株抗SARS-CoV人源单链抗体H12,亟待鉴定.为了快速制备大量具有生物活性的单链抗体H12,构建了pET28a-H12原核高表达载体,表达量占菌体总蛋白质30%以上.采用稀释复性和分子筛柱复性两种方法对包涵体蛋白进行复性与纯化,结果显示两种方法都能使得单链抗体复性.与稀释复性法相比,柱复性效果更好,其抗原结合活性是稀释复性法的1.51倍.柱复性后的单链抗体亲和力测定的解离常数Kd为73.5nmol/mL.为进一步研究单链抗体H12的功能奠定了基础.
Resumo:
Background: The outbreak of severe acute respiratory syndrome (SARS) caused a severe global epidemic in 2003 which led to hundreds of deaths and many thousands of hospitalizations. The virus causing SARS was identified as a novel coronavirus (SARS-CoV) an
Resumo:
通过植被—枯落物—生物结皮的样方调查,分析植被、枯落物及结皮自身生长状况与结皮退化的关系。结果表明:1)植被盖度和基盖度的变化对生物结皮退化影响较大,而对枯落物下结皮退化度和枯落物下结皮盖度的影响不明显,说明高等植物对植物间空地生物结皮退化的影响不明显;2)生物结皮的自身生长状况与其退化过程的关系不明显,其退化主要是受到其他因素的作用影响;3)枯落物的厚度和盖度是枯落物下结皮退化的重要影响因素,也是影响结皮退化盖度的重要因素。
Resumo:
We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.