43 resultados para 720 Architecture
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.
Resumo:
A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition. (C) 1996 Optical Society of America
New perspective on the Architecture of the late Devonian Arborescent Lycopsid Leptophloeum rhombicum
Resumo:
Bats (Chiroptera) are the second-most abundant mammalian order in the world, occupying a diverse range of habitats and exhibiting many different life history traits. In order to contribute to this highly underrepresented group we describe the sleep architecture of two species of frugivorous bat, the greater short-nosed fruit bat (Cynopterus sphinx) and the lesser dawn fruit bat (Eonycteris spelaea). Electroencephalogram (EEG) and electromyogram (EMG) data were recorded from multiple individuals (>= 5) by telemetry over a 72-h period in a laboratory setting with light/dark cycles equivalent to those found in the wild. Our results show that over a 24-h period both species spent more time asleep than awake (mean 15 h), less than previous reported for Chiroptera (20 h). C sphinx spent significantly more of its non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM) quotas during the light phase, while E. spelaea divided its sleep-wake architecture equally between both light and dark phases. Comparing the sleep patterns of the two species found that C. sphinx had significantly fewer NREM and REM episodes than E. spelaea but each episode lasted for a significantly longer period of time. Potential hypotheses to explain the differences in the sleep architecture of C. sphinx with E. spelaea, including risk of predation and social interaction are discussed. (C) 2010 Published by Elsevier B.V.
Resumo:
We examined the effect of different plant architecture types on epiphytic macroinvertebrates of a shallow macrophyte-dominated lake in China. Macroinvertebrates were sampled from four dominant submersed macrophytes in the lake - two dissected plants (Myriophyllum spicatum L. and Ceratophyllum demersum L.) and two undissected plants (Potamogeton maackianus A. Benn. and Vallisneria spiralis L.). Macro invertebrate richness showed significant differences among four submersed macrophyte habitats, and higher density per g of dry plant were associated with dissected plants than undissected plants. The average abundance in dissected plants was as three-six times as in undissected plants. The biodiversity of epiphytic macroinvertebrates was higher in dissected plants than undissected plants. Our results suggest that dissected plants provide different habitat for macroinvertebrates than dissected plant, and this concurs with the hypothesis that the former could support more epiphytic macroinvertebrates than the latter.
Resumo:
A 3(rd) order complex band-pass filter (BPF) with auto-tuning architecture is proposed in this paper. It is implemented in 0.18um standard CMOS technology. The complex filter is centered at 4.092MHz with bandwidth of 2.4MHz. The in-band 3(rd) order harmonic input intercept point (IIP3) is larger than 16.2dBm, with 50 Omega as the source impedance. The input referred noise is about 80uV(rms). The RC tuning is based on Binary Search Algorithm (BSA) with tuning accuracy of 3%. The chip area of the tuning system is 0.28 x 0.22 mm(2), less than 1/8 of that of the main-filter which is 0.92 x 0.59 mm(2). After tuning is completed, the tuning system will be turned off automatically to save power and to avoid interference. The complex filter consumes 2.6mA with a 1.8V power supply.