476 resultados para 6K-957-CY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Numerous microcracks propagation in one metal matrix composite, Al/SiCp under impact loading was investigated. The test data was got with a specially designed impact experimental approach. The analysis to the density, nucleating locations and distributions of the microcracks as well as microstructure effects of the original composite was received particular emphasis. The types of microcracks or debonding nucleated in the tested composite were dependent on the stress level and its duration. Distributions of the microcracks were depended on that of microstructures of the tested composite while total number of microcracks in unit area and unit duration, was controlled by the stress levels. Also, why the velocity was much lower than theoretical estimations for elastic solids and why the microcracks propagating velocities increased with the stress levels' increasing in current experiments were analysed and explained.
Resumo:
A gliding arc discharge plasma and its characteristics are described. Analysis on the production principle of the plasma is presented. Some experimental results about two novel types of the gliding arc plasma generator were obtained. These types of gliding arc plasma are potentially used in chemical industry and environment engineering.
Resumo:
A quasi-Dammann grating is proposed to generate array spots with proportional-intensity orders in the far field. To describe the performance of the grating, the uniformities of the array spots are redefined. A two-dimensional even-sampling encode scheme is adopted to design the quasi-Dammann grating. Numerical solutions of the binary-phase quasi-Dammann grating with proportional-intensity orders are given. The experimental results with a third-order quasi-Dammann grating, which has an intensity proportion of 3:2:1 from zero order to second order, are presented. (C) 2008 Optical Society of America
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
利用反射激波加热使试验气体电离,继之以强稀波快速冷却,构成一种新的激波管方法,并测定了在氩气氛中钠离子与电子三体复合速率系数。由于稀疏波冷却速度达10~6K/s,电离过程处于非平衡状态。选用氨基钠作为向实验体系中引入钠离子的源物质。用压电传感器和Langmuir静电探针分别监测反射激波后5区压力和离子浓度变化。稀疏波的冷却过程被视为绝热的。分析了探针工作状态,引入了探针鞘层内的弹性散射修正。测定了在800~2 600K温度范围内以惰性气体氩为碰撞第三体的钠离子与电子离复合速率系数k_r=3.43×10~(-14)T~(-3.77)cm~6s~(-1)。
Resumo:
The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 mu m thick and consisted of the intermetallic compound FeCr with an average grain size of 25 +/- 10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.
Resumo:
G-M制冷机是回热式的小型低温制冷机,它利用绝热放气膨胀原理(又称为西蒙膨胀法)获得低温,具有振动小、运行稳定、寿命长、操作方便等特点,在对效率、重量、尺寸等没有太高要求的场合应用非常广泛。在八十年代末,G-M制冷机已经突破了液氦温度,非常适合在液氦温区为超导器件或电子元件提供冷量,在低温真空泵、MRI超导磁体冷却系统、SQUID再冷凝系统等方面有良好的应用前景,推广其应用已属当务之急。本文围绕着探索氦温区G-M制冷机工作机理、提高低温蓄冷器性能及新型结构G-M制冷机的研制等方面,进行了系统地理论分析和纳归纳,以及初步地实验研究:一. 首次比较完善地建立了液氦温区G-M型制冷机整机数值模拟方法,数值模拟方法给出了制冷机内工质参数瞬态分布及动态变化曲线,为分析制冷机独特的循环特性提供了直观的依据,为探讨运行及结构参数对制冷性能的影响机理提供了强有力的工具。模型中考虑了制冷机中的阻力、实际进排气角、物性变化及蓄冷器内空隙率的存在等多种实际因素:解决了一、二级耦合及部件交界处物性变化不连续对计算影响等问题;采取网格非均匀化、牛顿迭代法以及负反馈原理等措施,提高了计算精度和收敛性。在微机上成功地模拟了液氦温区G-M制冷机的工作过程,程序采用模块化编程,具有一定通用性。二. 运用液氦温区整套机数值模拟方法,计算了制冷机内工质参数(氦流温度、压力、流速等)周期性变化和空间分布,采用一级蓄冷器与低温蓄冷器工作特性对比法,从整机内工质参数动态变化规律分析的角度,验证了液氦温区G-M制冷机工质氦的循环主要分为两部分:常规循环、低温循环。并详细地讨论了运行参数(频率、工作压力)及一级制冷机结构参数对整机内工数动态变化的影响规律以及制冷机性能的影响机理。三. 首次建立了较完善的液氦温区多层混合填料型低温蓄冷器的数值模拟方法,运用数值模拟方法,首次详细地研究了常用填料的不同组合、一定组合下填料比例以及蓄冷器结构对制冷机性能的影响机理,提出了不同填料的最佳节组合及一定组合下填料最佳比例的确定和低温蓄冷器结构和填料优化的原则,为合理有效地设计高性能液氦温区低温蓄冷器提供了依据。四. 提出并设计、加工了一种新型结构的液氦温区双级G-M型制冷机,该机结构在国内外属于首创。其具有以下主要结构特点:一、二级分别独立驱动;一、二级之间通过热桥连接;二级蓄冷器外置于汽缸等。同时建立了新型结构液氦温区双级G-M型制冷机实验系统,为今后整机性能和内部动态过程的研究奠定了基础。五. 新型结构双级G-M型制冷机二级单机动转频率为0.6Hz时,制冷温度为13.6K,且在20K时有4.4W的制冷量;制冷机已达到液氦温区,f = 0.4Hz时,最低温度为4.6K;f = 1Hz,制冷温度为10K时,制冷量大于6W,上述结果目前均未见有文献报道。在新型G-M制冷机上,初步进行了低温蓄冷器性能测试实验及运行参数对制冷机性能影响的实验研究。
Resumo:
An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.
Resumo:
High-energy ion emission from intense-ultrashort (30fs) laser-pulse- cooled deuterium-cluster (80K) interaction is measured. The deuterium ions have an average energy 20keV, which greatly exceeds Zweiback's expectation [Phys. Rev. Lett. 84 (2000) 2634]. These fast deuterium ions can be used to drive fusion and have a broad prospect.