6 resultados para 61.195
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
光敏核不育水稻农垦58S是石明松于1973年在晚粳农垦58的大田中发现的雄性不育突变体,它在长日照下雄性不育可被用于与恢复系杂交生产杂种,而在短日照下雄性可育能用于自交繁殖,它的恢复系来源广泛。基于这些特性,育种学家用光敏核不育水稻建立的二系杂交水稻制种技术有很大的应用潜力。近十几年来,育种学家用农垦58S作基因供体转育了许多新的不育系,研究结果表明育成的粳型不育系均为光敏不育系,但在育成的籼型不育系中,绝大多数丧失光敏核不育特性,变成温敏不育系。目前因不知光敏核不育的分子遗传机制,尚不能解释这些问题。 本文用双向电泳技术分析了农垦58S和农垦58苗期和育性转换光敏感期叶绿体蛋白质的差异,在农垦58S中发现三个蛋白质(Pl,P2和P3),其中Pl和P2在苗期和光敏感期叶片内均存在,P3仅在光敏感期的叶片中存在,它们不受长日照或短日照处理的影响。农垦58没有这三个蛋白质。 用制备型双向电泳纯化后,得到SDS - PAGE和IEF纯的Pl和P2。经SDS-PAGE和IEF测定,Pl的等电点是6.2,分子量是41 kDa;P2的等电点是5.8,分子量是61 kDa。现称Pl为P41,P2为P61。氨基酸序列分析和同源性检索发现P41与水稻叶绿体ATP合成酶p亚基和酵母转录因子CAD1有同源性,此外,P41的N-端序列中有一个与蛋白激酶催化核心中的多功能motif Y-G-X-G-X- (P/T)-G-V相似的序列;P61的14个氨基酸长的N-端序列与水稻叶绿体ATP合成酶β亚基的一致。P41和P61 N-端前12个氨基酸的序列也完全一致。 PCR扩增和Southern杂交分析没有发现农垦58S和农垦58之间ATP合成酶β亚基基因(atpB)的多态性。Nothern杂交分析表明农垦58S中仅有一种、与农垦58 atpB mRNA分子量相同的atpB转录产物,但它的atpB mRNA丰度明显低于农垦58的。没有检测到突变的atpB和其它形式的atpB转录产物。 分析P41和P61在其它水稻材料中的分布特点发现它们在粳型光敏不育系7001S、5088S、31301S、C407S和1647S,籼型光敏不育系W7415S和W9451S以及温(光)敏不育系培矮64S中存在,而在对照材料三系水稻马协A、珍汕97A、马协B、珍汕97B和明恢63以及常规粳稻C94153中不存在。根据这些不育系的系谱和它们与农垦58S之间基因的等位性研究结果,讨论了P41和P61与光敏核不育性的可能联系。
Resumo:
由14MeV中子照射天然铂靶,通过198Pt(n,α)反应产生195Os。用γ(X)γ符合方法搜索了195Os的衰变γ射线,结果没有找到可以属于它衰变的γ射线。
Resumo:
优良的种质是产业发展的重要保证,品种更新和养殖技术的发展已经给世界农业带来了令人瞩目的成就,然而我国水产生物的育种工作刚处于起步阶段,而育种技术的研究则更是滞后。借鉴陆生生物中发展起来的相对成熟的研究方法,可以帮助加快海洋生物遗传育种相关研究的进度。本研究以我国北方海区重要的海洋经济动物-皱纹盘鲍为研究对象,从表型遗传、数量性状遗传等2个方面开展了皱纹盘鲍的遗传育种研究,同时从幼鲍培育密度与分选效应等方面研究了皱纹盘鲍的中间培育技术。 主要结果如下: 1. 皱纹盘鲍的贝壳颜色遗传、食物对贝壳颜色表现型的影响,贝壳颜色与生长速度间的关系 将贝壳颜色为橘红色(O表型)的突变型皱纹盘鲍与贝壳颜色为绿色(G表型)的野生型皱纹盘鲍进行了连续2代的交配实验。结果表明:皱纹盘鲍橘红色的贝壳颜色相对于绿色的贝壳颜色为隐性性状,皱纹盘鲍的贝壳颜色表型受单位点、2个等位基因遗传控制,其中基因型为oo的个体,贝壳颜色的表现型为橘红色(O表型),而基因型为GG或Go的个体,贝壳颜色的表现型为野生型(G表型)。 为探讨食物类型对不同基因型皱纹盘鲍贝壳颜色表现型的影响,对不同贝壳颜色表型的个体投喂不同种类的食物,结果表明,除遗传因素外,皱纹盘鲍的贝壳颜色表现型显著地受食物类型的调控。其中oo基因型的个体,在摄食底栖硅藻(Navicula sp.)和红藻时,贝壳颜色的表型为橘红色;而在摄食褐藻、绿藻和以海带粉为唯一海藻源的人工配合饵料时,贝壳颜色的表型为黄色。GG和Go基因型的个体,在摄食底栖硅藻、红藻时,贝壳颜色的表型为褐红色;在摄食褐藻、绿藻和以海带粉为唯一海藻源的人工配合饵料时,贝壳颜色的表型为绿色。该结果表明,相同基因型的皱纹盘鲍在摄食不同类型的食物时,贝壳表现型不同,即不同类型的食物可以导致2种基因型皱纹盘鲍的贝壳颜色表现型在一定范围内发生转换:oo基因型的个体,贝壳的颜色可以表现为橘红色或者黄色,不会出现野生型皱纹盘鲍的褐红色或绿色;而GG与Go基因型的个体,相应的贝壳颜色表型只能是褐红色或者绿色,不会出现oo基因型可能表现的橘红色或黄色。特定基因型的皱纹盘鲍,在摄食特定类型的食物时贝壳的相应部位可表现出特定的颜色。皱纹盘鲍的这种“食物-贝壳颜色”的相关性可作为一种形态标记,用于标识皱纹盘鲍的个体和群体,该标记技术可用于皱纹盘鲍的养殖技术和遗传学研究。 此外,选用了贝壳颜色遗传学实验中建立的贝壳颜色发生分离的家系为实验材料,以壳长为指标,分析比较了来自相同家系的O表型与G表型个体之间的生长速度。结果表明,在幼鲍发育至412天止的3-5个统计时段内,没有在同一家系来源的2种贝壳颜色表型个体之间检验到生长速度的显著差异。 2. 皱纹盘鲍不同选育群体及杂交群体的贝壳形态参数分析 在皱纹盘鲍的7个群体中(包括已经对生长速度为指标进行了多代人工选育的群体4个、野生群体之间直接杂交繁育的杂交F1群体3个),测量了4-6龄成体样本的壳长(L)、壳宽(W)、壳高(H)和壳重(Sw),并计算了L/(L+W+H)、W/(L+W+H)、H/(L+W+H)和Sw/(L×W×H)等4个壳形态学参数。用方差分析方法(MANOVA、ANOVA)统计并比较了这些壳形态参数在皱纹盘鲍群体间的遗传变异。结果表明,4个壳形态参数在不同群体间变异系数分别为0.34、0.74、2.62和6.54,其中,H/(L+W+H)与Sw/(L×W×H)在各供试群体间均具有较高的多态性且差异达显著水平,表明这2个参数在不同群体间存在较高的遗传变异。由于在活体情况下无法测量壳重(Sw)性状,建议以参数H/(L+W+H)为指标对皱纹盘鲍贝壳形态(如壳型)等进行人工选择。 3. 皱纹盘鲍成体阶段生长性状的遗传参数估计 采用巢式设计,分析了成体阶段不同发育期皱纹盘鲍的壳长与生长速率的遗传力、不同发育期的壳长性状之间的遗传相关、以及不同发育期的生长速率之间的遗传相关,结果表明:(1)壳长遗传力在受精后第70 、130、320、320、380、490与550天的雄性组分估计值分别为0.161 ± 0.075、0.312 ± 0.131、0.326 ± 0.331、0.135 ± 0.228、0.153 ± 0.185和0.180 ± 0.106;雌亲组分估计分别为0.312 ± 0.172、0.699 ± 0.168、0.695 ± 0.168、0.977 ± 0.407、0.427 ± 0.195和0.449 ± 0.027。(2)生长速率遗传力在受精后第320~380天、490 ~ 550天,雄、雌组分估计值分别为0.080 ± 0.120(雄)、 0.210 ± 0.191(雌)以及0.299 ± 0.146(雄)、0.306± 0.148(雌)。雌亲组分的壳长遗传力和生长速率遗传力估计值较大且均达显著水平,表明皱纹盘鲍在成体阶段依然受母性效应的影响。成体阶段生长性状遗传力水平的估计对制定科学的皱纹盘鲍育种方案有指导意义。(3)雄亲组分估计的不同发育期(第390 ~ 550天)壳长间遗传相关为0.597 ~ 1.000,雌亲组分估计为0.589 ~ 1.177。由雄亲、雌亲组分估计,受精后第320~380天与第490 ~ 550天两个发育阶段生长速率间遗传相关均接近于0。雌亲组分估计不同发育期壳长间遗传相关均达显著水平(t0.05, d.f.=13 = 4.33 ~ 11.69,P<0.01),表明壳长性状早期选择有效,即在皱纹盘鲍早期阶段依据壳长性状对个体进行择优或去劣可在后期阶段获得壳长较大的个体。由于使用的雄亲数目少(8个父系半同胞),实验中以雄亲组分估计的遗传参数误差较大。 4. 皱纹盘鲍选育系间的群体杂交 进行了皱纹盘鲍4个人工选育系之间的完全双列杂交实验,以群体交配的方式共建立了16个组合;此外,以大连“98”选群与汕头“S”选群为亲本,以群体交配的方式建立了4个交配组合。对不同方向的杂交组合进行了中亲杂种优势、超亲杂种优势以及配合力等方面的评价。 (1)测量了4个选育群体(R、97、S和J)及其各杂交组合在受精后第9、20和30天时的壳长,统计分析了不同选育系间壳长性状的差异、评价了不同方向杂交组合的中亲与超亲杂种优势、以及配合力。结果如下: 选育系群体内交配繁育的4个组合,在受精后第9、20和30天的壳长均有显著差异,其中,97 97组合在早期发育各阶段均为最小,分别为0.462 ± 0.023mm、0.698 ± 0.057mm和1.476 ± 0.234mm;S S组合的3次测量值均为最大,分别为0.522 ± 0.023mm、0.824 ± 0.084mm和1.798 ± 0.229mm。 两个方向杂交组合与选育系亲本群体内交配组合的平均值和高亲值比较,得到如下结果:(A)受精后第9天壳长表现正向中亲杂种优势的组合有6个、表现负向中亲杂种优势的组合6个,其中J 97组合的中亲优势率最高,为9.05%;R S组合最低,为-6.61%。正向高亲杂种优势组合有4个、负向高亲杂种优势组合有8个,其中S J组合的高亲优势率最高,为5.77%;R S组合最低,为-7.96%。(B)受精后第20天壳长表现正向中亲杂种优势的组合有7个、表现负向中亲杂种优势的组合5个,其中J 97组合的中亲优势率最高,为12.60%;J R组合最低,为-8.72%。正向高亲杂种优势组合有3个、负向高亲杂种优势组合有11个,其中J 97组合的高亲优势率最高,为12.20%;J R组合最低,为-12.67%。(C)受精后第30天壳长表现正向中亲杂种优势的组合有7个、负向中亲杂种优势的组合5个,其中97 S组合的中亲优势率最高,为24.08%;S 97组合最低,为-12.69%。正向高亲杂种优势组合有6个、负向高亲杂种优势组合有6个,其中97 S组合的高亲优势率最高,为15.95%;S J组合最低,为-19.44%。上述结果表明,皱纹盘鲍不同选育系之间的交配组合,杂种优势率差异很大,因此,通过组配实验,将杂种优势率高的交配组合选择出来应用于生产,可望显著提高目标性状的产量。 对早期发育阶段各生长期壳长性状,亲本一般配合力(GCA)、各杂交组合间特殊配合力(SCA)以及正反交(REC)效应值进行方差分析,结果表明:各亲本GCA差异显著,说明各选育群体存在显著的遗传差异,其中汕头选群“S”在测量的各个生长期均为正值且显著大于其它各亲本;特殊配合力(SCA)以及正反交(REC)效应值较大在各杂交组合间存在显著差异,说明在早期生长发育阶段非加性遗传效应(显性和上位效应)占主导地位。综合各个生长期亲本GCA和杂交组特殊配合力(SCA)以及正反交(REC)效应值,杂交组合97×S在早期生长阶段不仅有较高SCA值而且两个亲本也具有较大的GCA值,表明选育系97和S较适宜作为杂交亲本使用。 (2)大连“98”选群与汕头“S”选群进行2×2因子设计的群体杂交实验,比较了各交配组合早期存活相关性状如受精率、孵化率、变态率以及壳长性状,评价了两个方向杂交组合平均以及不同方向杂交组合的中亲杂种优势率。结果表明早期发育阶段各组合间的受精率无显著差异,而孵化率、变态率等两个杂交方向平均的中亲杂种优势率为5.49%与12.53%,高于壳长性状的优势率(0.936-1.534%)。方差分析结果表明不同方向的杂交组合在早期发育阶段存活相关性状以及壳长性状存在显著差异。孵化率、变态率性状,S×98的中亲杂种优势率分别为13.21%与21.10%,均高于98×S的-3.84%与3.85%;而第10和25d壳长性状,S×98的中亲杂种优势率为1.14%与-2.52%,低于98×S的1.93%与4.41%。 为进一步评价“98”选群与“S”选群不同交配组合在不同温度条件下的生长,进行了基因型与环境的互作研究。从“98”选群与“S”选群的4个交配组合中分别取5月龄幼鲍100头,各组合随机分成3组,每组1个重复,分别于12°C、16°C和 22°C温度条件下进行培育,比较各交配组合基因型与温度对幼鲍生长的影响。不同温度条件下,各组合壳长生长的方差分析结果表明,基因型和温度都能够对幼鲍生长以及最终壳长产生极显著的影响(P < 0. 01),它们的交互作用也达到显著水平(P < 0.05)。杂交子代的幼鲍壳长在12°C、16°C和 22°C温度条件下均表现出杂种优势,双向杂交的中亲杂种优势率分别为5.32%、5.55%和0.03%,表明低温条件(12°C),比高温条件(22°C)下有更强的杂种优势。汕头“S”选群的早期孵化率、变态率、生长性状以及低温条件下幼鲍生长性状的单亲杂种优势率分别为16.64%、42.49%、3.42~5.79%和5.73~9.15%,单亲杂种优势率较大,表明可通过杂交手段,显著地改良汕头“S”选群在早期发育阶段的生长速度、存活率以及幼鲍期的生长性状。本研究的结果支持了Lerner(1954)杂种优势的基因与环境互作学说。 5. 皱纹盘鲍幼鲍的中间培育技术研究 (1)对南方越冬方式的评价 目前,每年的11月前后,将6-7月龄幼鲍运往南方的闽东、闽中、闽南沿海越冬,翌年4月至6月再运回到北方(大连、山东半岛)的养殖模式已经普遍应用于皱纹盘鲍的实际生产,为评价南方越冬的幼鲍培育方式,本研究分别以不同幼鲍材料在闽东三都海湾进行了越冬培育实验。 选择生产上壳长分别为18.37 ± 1.28 mm、15.89 ± 1.10 mm、14.55 ± 1.10 mm与10.59 ± 0.84 mm的幼鲍进行了为期6.5个月的越冬培育,实验结束时,存活率分别为95.56 ± 2.21%、90.55 ± 1.96%、83.97 ± 1.63%与63.30 ± 2.79%。回归分析表明,供试幼鲍在实验起始时的壳长与越冬阶段的存活率成正相关(P = 0.018 < 0.05)。该结果表明,提高幼鲍的规格可显著提高皱纹盘鲍的越冬成活率,因此对于实际生产而言,采取适当措施提高皱纹盘鲍越冬苗种的规格将大幅增加生产的收益,而采用生长速率快的品种、品系或提早采苗均可实现该目标。综合各规格组幼鲍,幼鲍在南方开放性水域进行越冬培育的平均存活率较高,可达到91.38±0.01%,从幼鲍南方越冬的存活曲线可以看出,幼鲍的死亡主要集中在从大连运至福建某地后的15天内,出现死亡高峰的原因可能是由于运输过程的胁迫。此外,2月及4月中下旬水温出现显著降低或回升时也有较明显的死亡出现。该部分结果,对皱纹盘鲍幼鲍的养成管理有指导意义,可以通过合理安排越冬时间、避开死亡的敏感期等措施减少苗种越冬阶段的死亡量。 以中国大连野生群体繁育的子一代为亲本(10♀,10♂),以群体交配的方式繁育F2代个体为实验材料,分别于南方海区以及北方室内升温水方式下进行生长、存活比较,结果表明南方越冬培育方式下,幼鲍壳长的日增长率为81.37-108.89 µm•day-1,与北方室内升温培育条件相比,壳长生长提高了1.08 ~ 1.68倍;而存活率无显著差异。皱纹盘鲍幼鲍南方越冬方式的优势主要体现在鲍鱼幼鲍的生长速度加快,同时节约养殖场的能耗 (2)幼鲍培育过程中的养殖密度与分选效应评价 以3种规格皱纹盘鲍幼鲍为材料比较幼鲍在4个培育密度以及分选或混养条件下壳长的平均日生长及特定生长率。在南方越冬培育方式下实验进行106天,多因素方差分析结果表明实验初始幼鲍的壳长以及培育密度对壳长的生长有显著影响,而且密度效应在不同幼鲍起始规格组中有不同表现;分选没有能够提高不同规格组的生长。本研究的结果对皱纹盘鲍幼鲍的越冬培育有一定的指导作用。
Resumo:
华南下寒武统保存着国际著名的生物群(如澄江生物群),同时蕴藏着磷块岩、重晶石、稀土及Ni-Mo-PGE等丰富的矿产资源,因此,它一直为地质科学家们持续关注的热点之一。关于华南下寒武统的研究,前人在古生物学方面已经取得了卓著的成就,主要表现在国际权威期刊上(如期刊《Science》和《Nature》)已发表大量的关于澄江生物群的研究成果,对早期生命演化研究具有重要而广泛的影响。然而,华南下寒武统年代学及国际对比研究方面已明显滞后,公开发表的华南下寒武统的高精度、可靠的锆石U-Pb年龄数据至本研究论文截稿时止仍然仅有唯一的一个,即Jenkins et al. (2002)报道的国际前寒武系-寒武系界线层型候选剖面―云南晋宁梅树村剖面的朱家菁组中谊村段中部(第5层)钾质斑脱岩锆石SHRIMP U-Pb年龄(538.2 ± 1.5 Ma)。因而,华南下寒武统中的重要生物群、矿床及具全球对比意义的C同位素漂移事件缺乏地层精确年龄的约束,进而制约了早期生命演化理论、矿床成因解释及地层国际对比等方面研究的发展。 近来,发现华南下寒武统赋存独特的钾质斑脱岩层,它们在横向上广泛分布于云南东部、四川峨眉麦地坪、贵州西部(如织金和金沙岩孔)及北部(如遵义松林)、湖北宜昌泰山庙和湖南张家界等地区,在地层序列垂向上主要产出于朱家菁组中谊村段中部、石岩头组底部以及它们的相当层位。这些钾质斑脱岩既是建立地层框架等时层潜在的物质基础,亦是获取地层精确锆石U-Pb年龄的具重要意义的研究对象之一。因此,对它们进行系统研究可望改观华南下寒武统年代学及国际对比研究方面的落后现状。 同时,华南下寒武统广泛产出的磷块岩既具有重要的资源价值,另一方面,任一磷块岩层代表着一次独立的成磷事件,因而将华南地区下寒武统磷块岩进行区域上的对比研究,从而以磷块岩层作为等时层,对构建华南下寒武统地层框架具有重要的地层学意义。 此外,华南下寒武统产出的Ni-Mo多元素富集层广泛分布于扬子地台范围,西起云南东部,东部延至浙江诸暨地区,在NE-SW向延伸近1600 km,它既代 表了重要的成矿事件,亦为关键的地球化学异常层位。因此,对Ni-Mo多元素富集层进行区域上的对比研究,明确它在华南下寒武统各重要剖面的产出位置,对于构建华南下寒武统层序框架具有重要意义。 遵义松林地区的下寒武统因赋存Ni-Mo-PGE矿床及与滇东地区澄江生物群相当的遵义生物群而日益受到国内外地质学家们的广泛关注。该区牛蹄塘组底部产出磷块岩、钾质斑脱岩及Ni-Mo多元素富集层,与滇东地区梅树村剖面出露的地层具有潜在的可对比性。因此,本研究选取近年来日益受科学家们关注的遵义松林地区下寒武统作为研究对象,重点对该区牛蹄塘组底部的钾质斑脱岩开展矿物学、地球化学和年代学研究。同时,将遵义松林地区下寒武统剖面上磷块岩、钾质斑脱岩、Ni-Mo多元素富集层主要与滇东地区梅树村剖面的相应岩层进行地球化学对比研究。研究的目的在于通过对华南地区上述两条代表性的下寒武统剖面进行地层对比研究,初步构建华南下寒武统具时间、空间涵义的层序框架,从而约束华南下寒武统中的重要生物群、矿床及具全球对比意义的C同位素漂移事件的时间,进一步促进华南下寒武统的划分和全球对比。论文获得以下主要结论性认识: (1)滇东地区朱家菁组中谊村段中部钾质斑脱岩及其邻近的磷块岩可构成华南下寒武统层序框架的第一个标志层。这一标志层在贵州大部分地区(或华南地区的多数下寒武统剖面)缺失。该标志层的磷块岩稀土元素总量和Y含量高于新元古代陡山沱期磷块岩,低于遵义松林地区牛蹄塘组底部及其华南其它地区相当层位(石岩头组底部及戈仲伍组)的磷块岩。第一个标志层的钾质斑脱岩的原始岩浆为亚碱性系列的酸性岩浆,其典型特征为具有较低的Zr(变化范围144×10-6~291×10-6,平均196.4×10-6)、Nb(变化范围10×10-6~13×10-6,平均11.86×10-6)含量和较高的Zr/Nb比值(变化范围为12.63~24.24,平均值为16.55)。这一层钾质斑脱岩的锆石U-Pb年龄为538.2±1.5 Ma(Jenkins et al., 2002)。 (2)遵义松林地区牛蹄塘组底部钾质斑脱岩和磷块岩分别相当于滇东地区石岩头组底部钾质斑脱岩和磷块岩,它们构成华南下寒武统层序框架的第二个标志层。该标志层中钾质斑脱岩的原始岩浆性质为中性岩浆,其碱性程度高于朱家菁组中谊村段中部钾质斑脱岩的原始岩浆。相对于中谊村段中部钾质斑脱岩,该层位的钾质斑脱岩具有高的Zr(变化范围187.0910-6~391.5710-6,平均值318.4010-6)、Nb(49.6910-6~140.0010-6,平均值90.6810-6)含量和低的Zr/Nb(2.60~4.32,平均值3.61)比值。该钾质斑脱岩的年龄为518 ± 5 Ma。该标志层的磷块岩以极其富REE和Y为特征,其稀土元素总量平均值为636.01×10-6,Y含量平均值262.43×10-6,明显高于滇东地区中谊村段磷块岩(∑REE平均值为195.45×10-6,Y含量平均值为91.2310-6),它们代表早寒武世时期一次特殊的以极其富REE和Y为特征的成磷事件。 (3)Ni-Mo多元素富集层可以作为构建华南下寒武统层序框架中的第三个等时标志层。滇东地区梅树村剖面的Ni-Mo多元素富集层被重新校正在玉案山组底部(即13层,Ni、Mo含量分别为135×10-6和583×10-6)。Ni-Mo多元素地球化学标志层的典型特征为在剖面上具Ni、Mo等多种微量元素及贵金属元素的最高异常。该标志层的Re-Os年龄为537~542 Ma,可能代表的不是地层层序的年龄。 (4)初步建立华南下寒武统时间框架。约束了华南地区下寒武统Ni-Mo-PGE矿床的下限年龄应为518 ± 5 Ma。同时,该时间框架亦约束了滇东地区澄江生物群及最古老三叶虫的下限年龄(518 ± 5 Ma),考虑到石岩头组底部钾质斑脱岩的产出位置与玉案山组中部澄江生物群的产出层位存在相当的距离(大于80 m),因此,前人对澄江生物群的推测年龄(525~530 Ma)可能有些偏老。此外,初步约束了华南地区具全球对比意义的C同位素正漂移事件的年龄(538~518 Ma)。该时间框架是建立在两个相互支持的地层高精度锆石SHRIMP U-Pb年龄的基础之上,而国际前寒武系-寒武系界线年龄的最新研究成果为542 Ma,因此,它支持将华南地区的前寒武系-寒武系界线置于朱家菁组中谊村段中部钾质斑脱岩层(第5层)的下伏地层的方案。结合华南地区最新的地层古生物学研究成果(朱茂炎等,2001;Zhu et al., 2003),将这一界线置于朱家菁组中谊村段底界可作为一种合理的选择。