127 resultados para 4 toluene sulfonic acid
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The p-toluene sulfonic acid (MA) in phenol matrix was separated and determined by capillary electrophoresis with ultraviolet detector. the effect of the concentration and pH of the buffer on separation was investigated. Cinnamic acid has been chosen as the internal standard from four compounds, the calibration curves of PTSA in 50 mg/L phenol matrix were obtained with and without the internal standard. The linear range was from 1.25 to 12.5 mg/L and the correlation coefficient was 0.9999 for both curves. The limit of detection of PISA was 0.75 mg/L at 3 times of SIN. Finally, the concentration of PTSA in four synthesized samples was determined with method of standard additions, and the effect of matrix was discussed. The values of MA in these samples were 1.01, 0.94, 1.56 and 0.00 mg/L respectively.
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The synthesis of new chiral smectic A (S-A) side-chain liquid crystalline polysiloxanes (LCPs) and ionomers (LCIs) containing 4-allyloxy-benzoyl-4-(S-2-ethylhexanoyl) p-benzenediol his ate (ABB) as mesogenic units and 4-[[4-(2-propenyloxy)phenyl] azo]benzensulfonic acid (AABS) as nonmesogenic units is presented. The chemical structures of the monomers and polymers are confirmed by FTIR spectroscopy or H-1-NMR. Differential scanning calorimetry (DSC), optical polarizing microscopy, and X-ray diffraction measurements reveal that all the polymers P-I-P-IV and ionomers P-V-P-VI exhibit S-A texture. The results seem to demonstrate that the tendency toward the S-A-phase region increases with increasing sulfonic acid concentration, and the thermal stability of the S-A phase is determined by the flexibility of the polymer backbones and the interactions of sulfonic acid groups. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A new sulfur-containing guanidino derivative, halichondria sulfonic acid (1) showing anti-HIV-1 activity, and halistanol trisulfate (2) with anti-tumor activity have been isolated from the marine sponge Halichondria rugosa Ridley & Dendy collected in the
Resumo:
The lifetime behavior of a H-2/O-2 proton exchange membrane (PEM) fuel cell with polystyrene sulfonic acid (PSSA) membrane have been investigated in order to give an insight into the degradation mechanism of the PSSA membrane. The distribution of sulfur concentration in the cross section of the PSSA membrane was measured by energy dispersive analysis of X-ray, and the chemical composition of the PSSA membrane was characterized by infrared spectroscopy before and after the lifetime experiment. The degradation mechanism of the PSSA membrane is postulated as: the oxygen reduction at the cathode proceeds through some peroxide intermediates during the fuel cell operation, and these intermediates have strong oxidative ability and may chemically attack the tertiary hydrogen at the a carbon of the PSSA; the degradation of the PSSA membrane mainly takes place at the cathode side of the cell, and the loss of the aromatic rings and the SO3- groups simultaneously occurs from the PSSA membrane. A new kind of the PSSA-Nafion composite membrane, where the Nafion membrane is bonded with the PSSA membrane and located at the cathode of the cell, was designed to prevent oxidation degradation of the PSSA membrane in fuel cells. The performances of fuel cells with PSSA-Nafion101 and PSSA-recast Nafion composite membranes are demonstrated to be stable after 835 h and 240 h, respectively.
Resumo:
The strong polar group, sulfonic acid, has successfully been introduced into ethylene/allylbenzene copolymers without degradation or crosslinking via chlorosulfonation reaction with chlorosulfonic acid as a chlorosulforiating agent in 1, 1,2,2-tetrachloroethane followed by hydrolysis. The degree of sulforiation (DS) can be easily controlled by changing the ratio of chlorosulfonic acid to the pendant phenyls of the copolymer. The microstructure of sulfonated copolymers were unambiguously revealed by H-1 NMR and H-1-H-1 COSY spectral analyses, which indicates that all the sulforiation reactions exclusively took place at the para-position of the aromatic rings.
Resumo:
BACKGROUND: Thermodynamics and kinetics data are both important to explain the extraction property. In order to develop a novel separation technology superior to current extraction systems, many promising extractants have been developed including calixarene carboxylic acids. The extraction thermodynamics behavior of calix[4]arene carboxylic acids has been reported extensively. In this study, the mass transfer kinetics of neodymium(III) and the interfacial behavior of calix[4]arene carboxylic acid were investigated.
Resumo:
In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.
Resumo:
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.
Resumo:
Synergistic extraction of trivalent rare earths (RE=Sc, Y, La, Gd, Yb) from hydrochloride medium using mixture of bis(2,4,4-trimethylpentyl)phosphinic acid (HL, Cyanex272) and Sec-nonylphenoxy acetic acid (HA, CA-100) in n-heptane has been studied. The synergistic enhancement coefficients were observed for La (1.30), Gd (1.97), Y (3.59), Yb (8.21) and Sc (14.41). The results indicated yttrium was extracted into n-heptane as YH(5)A(4)L(4) mixed species instead of Y(HL2)(3), Y(OH)(2)A(HA)(3) which were extracted by Cyanex272 and CA-100, respectively. A cation exchange mechanism was proposed and further clarified by IR spectra. The equilibrium constants, formation constants and thermodynamic functions such as Delta G, Delta H and Delta S were determined. The Cyanex272 + CA-100 system not only enhanced the extraction efficiency of RE but also improved the selectivities significantly. The mutual separation factors of these ions suggested the mixture system would be of practical value in extraction and separation of rare earths.
Resumo:
The ytterbium(III) extraction kinetics and mechanism with mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272) and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (P507) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The effects of the stirring rate, temperature, extractant concentration, and pH on the extraction with mixtures of Cyanex272 and P507 have been studied. The results are compared with those of the system with Cyanex272 or P507 alone. It is concluded that the Yb(III) extraction rate is enhanced with mixtures extractant of Cyanex272 and P507 according to their values of the extraction rate constant, which is due to decreasing the activation energy of the mixtures. At the same time, the mixtures exhibits no synergistic effects for Y(III), which provides better possibilities for Yb(III) and Y(III) separations at a proper conditions than anyone alone. Moreover, thermodynamic extraction separation Yb(III) and Y(III) by the mixtures has been discussed, which agrees with kinetics results. Extraction rate equations have also been obtained, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.
Resumo:
Equilibrium distributions of cobalt(II), nickel(II), zinc(II), cadmium(II), and copper(II) have been studied in the adsorption with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA) as an extractant from chloride medium. The distribution coefficients are determined as a function of pH. The data are analyzed both graphically and numerically. The extraction of the metal ions can be explained assuming the formation of metal complexes in the resin phase with a general composition ML2(HL)(q). The adsorbed species of the metal ions are proposed to be ML2 and the equilibrium constants are calculated. The efficiency of the resin in the separation of the metal ions is provided according to the separation factors values. The separation of Zn from Ni, Cd, Cu, Co, and Co from Ni, Cd, Cu with the resin is determined to be available. Furthermore, Freundlich's isothermal adsorption equations and thermodynamic quantities, i.e., DeltaG, DeltaH, and DeltaS are determined.