20 resultados para 3d Reconstruction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
无标定情况下的三维重建技术是近年来计算机视觉领域研究的一个热点问题。它由未标定的图像序列恢复出摄像机的投影矩阵,并重建物体在欧氏空间下的三维结构。该技术在虚拟现实、人机交互、建筑构图、医学成像等方面有着广泛的应用。因此,越来越受到研究者们的重视。 本文主要对在射影空间以及欧氏空间下通过未标定图像进行三维重建的方法进行研究,并取得如下成果: 基础矩阵包含了两幅图像间的几何约束的所有信息,是三维重建的基础和关键。本文分析了多种基础矩阵估计方法,总结了它们的不足,提出了一种基于变量含误差(EV)模型的基础矩阵估计方法。该方法考虑了坐标规范化、秩的约束、目标函数几何意义和测量值误差,实验表明其估计结果具有较高的精度和抗噪性。 为完成三维重建,本文由基础矩阵表示出了欧氏空间下摄像机的投影矩阵,提出了一种基于EV模型确定欧氏投影系数的方法。针对模型中对参数非线性的求解,本文采用最少的参数,将模型转化为二次型的形式,并用伪线性化的方法来求解参数。实验表明,在点的位置误差下,该方法仍具有很高的精度,重建结果较好;在有少数的误匹配特征点的情况下,也完成了重建。 本文设计了增强现实的实验,用本文的方法完成三维重建,并将虚拟物体加入到重建的场景中。实验结果验证了本文方法的可行性和重建的效果。
Resumo:
从二维空间和三维空间2种角度研究误匹配滤波算法,提出在匹配前用于降低误匹配的灰度预处理算法和一种基于真实控制点的视差滤波算法。前者只针对2幅图像的重叠区域进行灰度均衡,可以减少计算量,后者在传统视差均值滤波的基础上可进一步提高误匹配的滤波效率。基于真实图像的实验结果表明,新算法可以有效滤除误匹配,提高三维重建精度,保证重建效果。
Resumo:
利用虚拟现实技术虚拟出月球机器人在月面上的作业环境和作业过程,是提高机器人作业的安全系数和工作效率的一条有效途径。在3D重建得到的虚拟月面环境中,如果采用通常的单纯基于运动学(或者动力学)模型的仿真方法,对机器人的作业和运动进行虚拟,那么机器人与地形交互的过程中容易产生接触偏差。而且,随着仿真时间的推进,这种接触偏差会逐渐积累并不断增大,进而严重影响仿真测试的精度和效果。为了消除月球机器人仿真中的轮地交互误差,在分析误差来源的基础上,提出了基于运动学优化的解决方法。最后利用实际的虚拟现实仿真系统,验证了所提出方法的有效性。
Resumo:
介绍了基于模型的位姿估计中所使用的一些优化方法。为了提高位姿估计的精度,摄像机的标定参数必须足够精确,这就对标定过程的非线性优化算法提出了很高的要求,采用了一种新的优化目标函数,用来最小化控制点间的三维重建误差,从而使标定参数是全局最优;在双像机位姿估计中,引入了实时遗传算法进行全局搜索,加快了算法的收敛速度。最后的实验证明了这些方法的正确性并显示出这些方法在精度上比传统方法有了较大程度的提高。
Resumo:
介绍一种在计算机上生成Mandelbrot集和Julia集图象的简易算法。该算法对计算机的软硬件要求均不高,在普通的微机以及工作站上均可实现。
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
A 3D anisotropic elastoplastic-damage model was presented based on continuum damage mechanics theory. In this model, the tensor decomposition technique is employed. Combined with the plastic yield rule and damage evolution, the stress tensor in incremental format is obtained. The derivate eigenmodes in the proposed model are assumed to be related with the uniaxial behavior of the rock material. Each eigenmode has a corresponding damage variable due to the fact that damage is a function of the magnitude of the eigenstrain. Within an eigenmodes, different damage evolution can be used for tensile and compressive loadings. This model was also developed into finite element code in explicit format, and the code was integrated into the well-known computational environment ABAQUS using the ABAQUS/Explicit Solver. Numerical simulation of an uniaxial compressive test for a rock sample is used to examine the performance of the proposed model, and the progressive failure process of the rock sample is unveiled.
Resumo:
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.
Resumo:
This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to ensure the maneuverability of the method. Three examples are introduced to illustrate the use of this method. The results are given in detail such as the local factor of safety and local potential sliding direction for a slope. As the method is an extension of 2D Janbu's generalized procedure of slices (GPS), the results obtained by GPS for the longitudinal sections of a slope are also given for comparison with the 3D results. A practical landslide in Yunyang, the Three Gorges, of China, is also analyzed by the present method. Moreover, the proposed method has the advantages and disadvantages of GPS. The problem frequently encountered in calculation process is still about the convergency, especially in analyzing the stability of a cutting corner. Some advice on discretization is given to ensure convergence when the present method is used. However, the problem about convergency still needs to be further explored based on the rigorous theoretical background.
Resumo:
In this paper the finite element method was used to simulate micro-scale indentation process. The several standard indenters were simulated with 3D finite element model. The emphasis of this paper was the differences between 2D axisymmetric cone model and
Resumo:
以激光熔凝表面强韧化处理为背景,应用空间的弹塑性有限单元和高精度的数值算法、同时考虑材料组织性能的变化来模拟材料的温度场。主要研究激光熔凝加工中瞬时温度场数值模拟,同时考虑相变潜热的影响,为第二步热应力场及残余应力的数值模拟做准备。最后用算例验证了模型的正确性,并给出了不同时刻温度场的分布。
Resumo:
A general three-dimensional model is developed for simulation of the growth process of silicon single crystals by Czochralski technique. The numerical scheme is based on the curvilinear non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature gradient along solid/melt surface is small.
Resumo:
Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.