19 resultados para 3-NUCLEON FORCES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We construct microscopic three-nucleon forces consistent with the Bonn and Nijmegen two-nucleon potentials, and including , Roper, and nucleon-antinucleon excitations. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined.
Resumo:
We have investigated the isospin dependence of the neutron and proton (PF2)-P-3 superfluidity in isospin-asymmetric nuclear matter within the framework of the Brueckner-Hartree-Fock approach and the BCS theory. We show that the (PF2)-P-3 neutron and proton pairing gaps depend sensitively on isospin asymmetry of asymmetric nuclear matter. As the isospin asymmetry increases, the neutron (PF2)-P-3 superfluidity becomes stronger and the peak value of the neutron (PF2)-P-3 pairing gap increases rapidly. The isospin dependence of the proton (PF2)-P-3 superfluidity is shown to be opposite to the neutron one. The proton (PF2)-P-3 superfluidity becomes weaker at a higher asymmetry and it even vanishes at high enough asymmetries. At high asymmetries, the neutron (PF2)-P-3 superfluidity turns out to be much stronger than the proton one, implying that the neutron (PF2)-P-3 superfluidity is dominated in the highly asymmetric dense interior of neutron stars.
Resumo:
We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.
Resumo:
We have investigate the nucleon superfluidity in asymmetric nuclear matter and neutron star matter by using the Brueckner-Hartree-Fock approach and the BCS theory. We have predicted the isospin-asymmetry dependence of the nucleon superfluidity in asymmetric nuclear matter and discussed particularly the effect of microscopic three-body forces. It has been shown that the three-body force leads to a strong suppression of the proton S-1(0) superfluidity in beta -stable neutron star matter. Whereas the microscopic three-body force is found to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
Based on the idea proposed by Hu [Scientia Sinica Series A XXX, 385-390 (1987)], a new type of boundary integral equation for plane problems of elasticity including rotational forces is derived and its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to demonstrate the accuracy of the new type of boundary integral equation.
Resumo:
1. We studied driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status, the oligotrophic deep Lake Fuxian and the eutrophic shallow Lake Xingyun. 2. Phytoplankton samples were taken monthly for a year and phytoplankton species were sorted into the main taxonomic groups and associations proposed by Reynolds. A canonical correspondence analysis (CCA) was used to test the occurrence of these classification schemes and to determine their discriminatory power. 3. The results suggest that the major driving forces in Lake Fuxian were physical variables, and particularly the underwater light climate, whereas, nutrients were the important driving force in Lake Xingyun. 4. Top-down control through zooplankton grazing in Lake Fuxian was hardly ever a significant determinant itself, because of the scarcity of zooplankton and their low grazing efficiency of predation while a dominance of inedible cyanobacteria throughout the year rendered top-down controls ineffective failing in Lake Xingyun. Hence phytoplankton communities in both lakes appear to be regulated primarily by bottom-up controls.
Resumo:
Using a transport model coupled with a phase-space coalescence afterburner, we study the triton-He-3 (t-He-3) ratio with both relative and differential transverse flows in semicentral Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t-He-3 pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t-He-3 relative and differential flows than the pi(-)/pi(+) ratio in the same reaction. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
Extended quark distribution functions are presented obtained by fitting a large amount of experimental data of the l-A DIS process on the basis of an improved nuclear density model. The experimental data of l-A DIS processes with A >= 3 in the region 0.0010 <= x <= 0.9500 axe quite satisfactorily described by using the extended formulae. Our knowledge of the influence of nuclear matter on the quark distributions is deepened.
Resumo:
We examine the electric and magnetic strange form factors of the nucleon in the pseudoscalar-vector SU(3) Skyrme model, with special emphasis on the effects of isospin symmetry breaking (ISB). It is found that ISB has a nontrivial effect on the strange vector form factors of the nucleon and its contribution to the nucleon strangeness is significantly larger than one might naively expect. Our calculations and discussions may be of some significance for the experimental extraction of the authentic strangeness.
Resumo:
We investigate the (PF2)-P-3 neutron superfluidity in beta-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V-18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the (PF2)-P-3 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
Within the Brueckner-Hartree-Fock framework, the equation of state and the properties of newborn neutron stars are investigated by adopting a realistic nucleon-nucleon interaction AV(18) supplemented with a microscopic three-body force or a phenomenological three-body force. The maximum mass of newborn neutron star and the proton fraction in the newborn beta-stable neutron-star matter are calculated. The neutrino-trapping and the three-body force effects are discussed, and the interplay between the effects of the trapped neutrino and the three-body force are especially explored. It is shown that neutrino trapping considerably affects the proton abundance and the equation of state of the newborn neutron star in both cases with and without the three-body forces. The effect of neutrino trapping remarkably enhances the proton abundance, and the contribution of the three-body force makes the equation of state of the newborn neutron star much stiffer at high densities and consequently increases the proton abundance strongly. The trapped neutrinos significantly reduce the influence of the three-body force on the proton abundance in newborn neutron stars.
Resumo:
In the framework of the finite temperature Brueckner-Hartree-Fock approach including the contribution of the microscopic three-body force, the single nuclear potential and the nucleon effective mass in hot nuclear matter at various temperatures and densities have been calculated by using the hole-line expansion for mass operator, and the effects of the three-body forces and the ground state correlations on the single nucleon potential have been investigated. It is shown that both the ground state correlations and the three-body force affect considerably the density and temperature dependence of the single nucleon potential. The rearrangement correction in the single nucleon potential is repulsive and it reduces remarkably the attraction of the single nucleon potential in the low-momentum region. The rearrangement contribution due to the ground state correlations becomes smaller as the temperature rises up and becomes larger as the density increases. The effect of the three-body force on the ground state correlations is to reduce the contribution of rearrangement. At high densities, the single nucleon potential containing both the rearrangement correction and the contribution of the three-body force becomes more repulsive as the temperature increases.
Resumo:
We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved
Resumo:
Using a transport model coupled with a phase-space coalescence after-burner we study the triton-He-3 relative and differential transverse flows in semi-central Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. We find that the triton-He-3 pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.