7 resultados para 270503 Animal Anatomy and Histology
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene (vhhP2) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non-V. harveyi species, including V. parahaemolyticus and V. alginolyticus. A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2. This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii, which is most closely related to V. harveyi. One of the V. campbellii strains was falsely identified as V. harveyi. Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non-V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi. However, this method can not distinguish some V. campbellii strains from V. harveyi. Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples.
Resumo:
China has a large land area with highly diverse topography, climate and vegetation, and animal resources and is ranked eighth in the world and first in the Northern Hemisphere on richness of biodiversity. Even though little work on molecular evolution had
Resumo:
The taxonomy of the douc and snub-nosed langurs has changed several times during the 20th century. The controversy over the systematic position of these animals has been due in part to difficulties in studying them: both the doucs and the snub-nosed langurs are rare in the wild and are generally poorly represented in institutional collections. This review is based on a detailed examination of relatively large numbers of specimens of most of the species of langurs concerned. An attempt was made to draw upon as many types of information as were available in order to make an assessment of the phyletic relationships between the langur species under discussion. Toward this end, quantitative and qualitative features of the skeleton, specific features of visceral anatomy and characteristics of the pelage were utilized. The final data matrix comprised 178 characters. The matrix was analyzed using the program Hennig86. The results of the analysis support the following conclusions: (1) that the douc and snub-nosed langurs are generically distinct and should be referred to as species of Pygathrix and Rhinopithecus, respectively; (2) that the Tonkin snub-nosed langur be placed in its own subgenus as Rhinopithecus (Presbytiscus) avunculus and that the Chinese snub-nosed langur thus be placed in the subgenus Rhinopithecus (Rhinopithecus); (3) that four extant species of Rhinopithecus be recognized: R. (Rhinopithecus) roxellana Milne Edwards, 1870; R. (Rhinopithecus) bieti Milne Edwards, 1897; R. (Rhinopithecus) brelichi Thomas, 1903, and R. (Presbytiscus) avunculus Dollman, 1912; (4) that the Chinese snub-nosed langurs fall into northern and southern subgroups divided by the Yangtze river; (5) that R. lantianensis Hu and Qi, 1978, is a valid fossil species, and (6) the precise affinities and taxonomic status of the fossil species R. tingianus Matthew and Granger, 1923, are unclear because the type specimen is a subadult.
Resumo:
The Sox gene family is found in a broad range of animal taxa and encodes important gene regulatory proteins involved in a variety of developmental processes. We have obtained clones representing the HMG boxes of twelve Sox genes from grass carp (Ctenopharyngodon idella), one of the four major domestic carps in China. The cloned Sox genes belong to group B1, B2 and C. Our analyses show that whereas the human genome contains a single copy of Sox4, Sox11 and Sox14, each of these genes has two co-orthologs in grass carp, and the duplication of Sox4 and Sox11 occurred before the divergence of grass carp and zebrafish, which support the "fish-specific whole-genome duplication" theory. An estimation for the origin of grass carp based on the molecular clock using Sox1, Sox3 and Sox11 genes as markers indicates that grass carp (subfamily Leuciscinae) and zebrafish (subfamily Danioninae) diverged approximately 60 million years ago. The potential uses of Sox genes as markers in revealing the evolutionary history of grass carp are discussed.
Resumo:
8-hydroxy-2'-deoxyguanosine (8OHdG) has been widely used as a biomarker of oxidative DNA damage in both animal models and human studies. To evaluate the effect of cigarette smoking on oxidative stress, we studied the levels of urinary 8OHdG from smokers and non-smokers and investigated the association with cigarette smoking. The urinary 8OHdG concentrations were determinated by capillary electrophoresis with end-column amprometric detection (CE-AD) after a single-step solid phase extraction (SPE), and then quantitatively expressed as a function of creatinine excretion. To increase the concentration sensitivity, a dynamic pH junction was used and the focusing effect was obvious when using 30 mM phosphate (pH 6.50) as sample matrix. The limit of detection is 4.3 nM (signal-to-noise ratio S/N = 3). The relative standard deviation (R.S.D.) was 1.1% for peak current, and 2.3% for migration time. Based on the selected CE-AD method, it was found that the mean value of urinary 8OHdG levels in the smokers significantly higher than that in non-smokers (31.4 +/- 18.9 nM versus 14.4 +/- 7.6 nM, P = 0.0004; 23.5 +/- 21.3 mug g(-1) creatinine versus 12.6 +/- 13.2 mug g(-1) creatinine, P = 0.028). (C) 2004 Elsevier B.V. All rights reserved.