5 resultados para 23H
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
聚合物膜离子选择性电极具有选择性高、使用简便、价格低廉等优点,在环境监测中日益受到人们的关注。这类电极的响应特性主要取决于聚合物膜相中起分子识别作用的离子载体的选择性。本文设计合成了一系列对重金属离子具有高选择性的有机配体,并将其作为电中性离子载体应用于银、汞、锌、铬等离子选择性电极中,实现了对重金属离子的高选择性测定。此外,我们对海水中有机物质的紫外线消解进行了研究,优化了消解条件,采用离子选择性电极技术实现了对海水中重金属污染物的快速检测。具体内容如下: 1、以硫氮杂冠醚为离子载体的银离子选择性电极制备及性能研究。 合成了一系列硫氮杂冠醚配体,通过优化反应条件,提高了反应产率,简化了产物处理过程。将此类冠醚作为离子载体用于银离子选择性电极的制备,并讨论了冠醚环大小、冠醚环的韧性以及硫原子个数对电极选择性的影响。在此研究基础上,利用沉淀-溶解平衡法调节内充液主离子浓度,采用冠醚9,10,12,13,24,25-六氢-5H,15H,23H-二苯[b,q][1,7,10,13,19,4,16]五硫二氮二十三环-6,16 (7H,17H)-二酮环作为低检出限银离子选择性电极载体,通过优化电极的内充液和聚合物膜组份,测得最低检出限为2.2×10-10 M,电极电位响应斜率为54.5 mV/dec.,线性范围为1.0×10-9-1.0×10-5 M,电极使用寿命为一个月。采用标准加入法,成功实现了自来水中银离子浓度的测试,并以该电极作为指示电极,以硝酸银溶液为滴定剂,成功滴定了I-、Br-和Cl-离子的混合液。 2、以1,2,4-三唑衍生物为离子载体的汞离子选择性电极的制备及性能表征。 设计合成了一种基于1,2,4-三唑的希夫碱结构化合物,3,5-二(二硫代甲酸苄酯肼基-2-亚甲胺基苯氧甲基)-1-(四氢-2H-吡喃)-1H-1,2,4-三唑,并成功用作中性载体实现对汞离子的测定。在最佳膜组分条件下,以该化合物作为载体的汞离子选择性电极的检出限为2.6×10-7 M Hg2+,电极电位响应斜率为29.3±0.3 mV/dec.,线性范围为1.0×10-6-3.0×10-4 M。该电极使用寿命为2个月,在pH 2.6-5.2范围内测试不受酸度影响。以该电极为指示电极,以EDTA为滴定剂,可准确滴定溶液中汞离子的浓度。 3、以希夫碱结构化合物为离子载体的锌离子选择性电极的制备及性能研究。 本文设计了一种含吡啶杂环的希夫碱结构化合物(E)-N'-(吡啶-2-亚甲胺基)-2-((E)-吡啶-2-亚甲胺基)苯甲酰肼,并成功用作离子载体实现对锌离子的测定。在最佳膜组分条件下,以该化合物为载体的锌离子选择性电极的检出限为7.4×10-7M Zn2+,电极电位响应斜率为25.9 mV/dec.,线性范围为1.0×10-6-1.0×10-3 M。该电极使用寿命为3个月,在pH 3.4-5.8范围内测试不受酸度影响。以该电极为指示电极,以EDTA为滴定剂,可准确滴定溶液中锌离子的浓度。 4、紫外光在线消解技术用于离子选择性电极测试海水中重金属离子的研究。 海水中重金属离子大多以络合物形式存在,而离子选择性电极只对游离态金属离子响应,因此要实现离子选择性电极测试海水中的重金属,首先必须使金属离子从络合物中游离出来。紫外光消解方法相对于其它海水预处理手段是一种清洁的样品预处理方法。我们以模拟海水为考察对象,考察了盐度、酸度、有机物浓度对消解效率的影响,并在优化消解条件的基础上对实际海水进行消解,利用离子选择性电极成功实现了海水中铜离子浓度的测试,测试值与ICP-MS数值一致。 5、合成希夫碱结构罗丹明B衍生物作为载体和分子探针用于Cr3+离子的检测。 设计合成了希夫碱结构罗丹明B衍生物2-亚甲胺基-8-乙酯基喹啉-罗丹明。荧光法显示,在化合物对铬离子(III)有较好的选择性,进而我们将该化合物作为分子探针进行了详细的研究。结果表明,分子探针与铬离子配位比为1:1,铬离子响应的线性范围是8.0×10-7-8.0×10-5 M,检测下限为1.9×10-7 M。电化学测试结果显示,基于该化合物为载体的离子选择性电极对铬离子(III)的选择性较差。
Resumo:
采用RT-PCR的方法,以不同发育时期的鲤鱼胚胎和幼鱼为材料,研究了与鱼类生殖相关的HPG轴以及与生长相关的GH/IGF轴中GnRH、GtH以及GH、GHR和IGF重要信号分子的转录起始特征。结果显示,sGnRH、cGnRH、GtH-Iβ亚基和GHR于鲤鱼胚胎受精后20h开始转录,IGF-1于受精后23h开始转录,GtH-IIβ亚基于受精后26h开始转录,GtHα亚基于受精后46h开始转录,GH于1dph(孵出后第1天)开始转录。其中,GHR和IGF-1均早于GH开始转录,GtHα亚基和β亚基的转录起始时
Resumo:
In the presence of F-, OH-, Cl-, electrochemical redox of (OEP)Mg(II) [2,3, 7,8,12,13,17,18 octaethyl-21H, 23H-porphine magnesium (II)] are investigated in DCE/0.1 mol/L solution by cyclic voltammetry and spectroelectrochemistry, In the presence of anions, anions are axially coordinated to (OEP)Mg(II) generate (OEP)Mg(II)Y, the E-1/2 of (OEP)MS(II)Y oxidation are negatively shifted. A chemical reaction following the second oxidation step is observed, the E-1/2 of the reaction product is obtained. Mechanism of (OEP)Mg(II) in the halogen and OH- anions titration process has been proposed.
Resumo:
本文采用离子交换分离,EDTA络合滴定的化学分析方法测定Y-Ba-Cu-O体系中Y、Ba、Cu的组成,其相对误差小于0.5%,本方法准确度高,设备简单、耗时短(约2—3h)。
Resumo:
对虾病害在世界范围内的广泛传播,给水产养殖和沿海农村经济造成了重大损失。深入开展对虾免疫机制研究并在此基础上寻找对虾疾病防治的有效方法已成为当务之急。研究表明,当对虾等甲壳动物受到外界病原刺激时,其体内的吞噬细胞在吞噬活动中会激活磷酸己糖支路的代谢,引起呼吸爆发,产生多种活性氧分子。另外,受到病原侵染的对虾还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发大量活性氧的产生。这些活性氧分子可以杀灭入侵的病原微生物,但同时由于活性氧分子反应的非特异性,它们也会对宿主的细胞、组织和器官造成严重伤害,进而导致对虾生理机能的损伤和免疫系统的破坏。所以,消除对虾体内因过度免疫反应产生的过量氧自由基将能够增强其抵御病原侵染的能力,提高免疫力。本论文从中国明对虾体内克隆了线粒体型超氧化物歧化酶(mMnSOD)、胞质型超氧化物歧化酶(cMnSOD)、过氧化氢酶(Catalase)和过氧化物还原酶(Peroxiredoxin)等四种与免疫系统相关的抗氧化酶基因,分析了它们的分子结构特征,组织分布及应答不同病原刺激的表达变化模式,并对其中的mMnSOD基因和Peroxiredoxin基因进行了体外重组表达、分离纯化和酶活性分析。 采用RACE技术从中国明对虾血细胞中克隆了两个超氧化物歧化酶(SOD)基因,通过序列比对分析发现,其中一个为mMnSOD基因,另一个为cMnSOD基因。mMnSOD基因的cDNA全长为1185个碱基,其中开放阅读框为660个碱基,编码220个氨基酸,其中推测的信号肽为20个氨基酸。多序列比对结果显示中国明对虾mMnSOD基因的推导氨基酸序列与罗氏沼虾、蓝蟹的推导氨基酸序列同源性分别为88%和82%。Northern blot结果表明,该基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。半定量RT-PCR结果显示,对虾感染病毒3 h时,该基因在血细胞和肝胰脏中的转录水平显著升高。此外,通过构建原核表达载体,本研究对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活分析。cMnSOD基因的cDNA全长为1284个碱基,其中开放阅读框为861个碱基,编码287个氨基酸。多序列比对结果显示中国明对虾cMnSOD基因的推导氨基酸序列与斑节对虾和凡纳滨对虾的同源性高达98%和94%。组织半定量结果显示,cMnSOD基因在对虾被检测的各个组织中均有表达。 另外,半定量RT-PCR结果表明,对虾感染病毒23h时,该基因在肝胰脏中的转录上升到正常水平的3.5倍;而感染后59 h时,该基因在血细胞中的转录上升到正常水平的2.5倍。 利用根据其他生物过氧化氢酶保守氨基酸序列设计的简并引物,结合RACE技术,从中国明对虾肝胰脏中克隆到了过氧化氢酶基因的部分片段,片段长1725个碱基。多序列比对结果发现目前所得中国明对虾Catalase基因部分片段的推导氨基酸序列与罗氏沼虾和皱纹盘鲍Catalase氨基酸序列的同源性分别达到95%和73%。通过实时荧光定量PCR技术对中国明对虾Catalase基因在各个组织中的分布情况及病毒感染后该基因在血细胞和肝胰脏中的转录变化进行了研究。结果发现,该基因在肝胰脏、鳃、肠和血细胞中表达水平较高,在卵巢、淋巴器官和肌肉中的表达水平相对较弱;感染病毒23 h和37 h时,对虾血细胞和肝胰脏中该基因mRNA的表达量分别出现显著性上升。 依据中国明对虾头胸部cDNA文库提供的部分片段信息,结合SMART-RACE技术,从中国明对虾肝胰脏中克隆到了过氧化物还原酶基因(Peroxiredoxin), 该基因的cDNA全长为942个碱基,其中开放阅读框为594个碱基,编码198个氨基酸。中国明对虾Peroxiredoxin基因的推断氨基酸序列与伊蚊、文昌鱼和果蝇等Peroxiredoxin基因的推断氨基酸序列同源性分别为77%、76%和73%。其蛋白理论分子量为22041.17 Da,pI为5.17。Northern blot结果表明,Peroxiredoxin基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。实时荧光定量PCR结果显示,弧菌感染后,该基因在对虾血细胞和肝胰脏中的转录水平都有明显变化并且表达模式不同。另外,对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活性分析。酶活性分析表明,复性后的重组蛋白能在DTT存在的条件下还原H2O2。