7 resultados para 17B
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
在兰州重离子加速器国家实验室(HIRFL)放射性次级束流线(RIBLL)上,用束流透射法测量了丰中子奇异核17B与C靶反应的总截面.假定17B具有15B(核芯)+2n结构,采用Gauss+HO形式的密度分布和零力程Glauber模型进行计算的结果可以很好地拟合实验数据,并得出17B的密度分布有一个很大的弥散,表明17B是双中子晕核.
Resumo:
核反应总截面是描述原子核反应基本特征的一个重要的物理量,从中可以得到有关核反应、核结构和核内核子分布的信息。利用透射法测量核的反应总截面对于模型没有依赖性,因而得到的结果更加可靠。在兰州放射性束流线(RIBLL)上利用透射法测量了17B与C、Pb靶的反应,得到了17B与C、Pb的反应总截面和去除双中子截面,同时首次尝试用CLOVER探测器测量与碎片符合的γ能谱。利用半经验的Shen公式可以很好地拟合稳定核的反应总截面的实验结果,但是并不能很好地描述17B的实验结果,说明17B具有奇异结构。采用描述不稳定核的多种密度分布形式代入零力程的Glauber模型计算17B与C的反应总截面,并与实验结果进行了比较。发现采用Skyrme-Hatree-Fock(SHF)、双Gauss、Gauss+HO计算的密度分布形式都能够很好地拟合整个能区内的实验结果。通过各种密度分布形式提取了17B的核子密度分布,发现17B的中子密度分布有很大的弥散,并证实了17B是由核芯15B加两个价中子组成的晕结构。将Skyrme-Hatree-Fock(SHF)、双Gauss、Gauss+HO密度分布形式,输入Glauber模型与实验结果比较,提取了17B的物质均方根半径,不同密度分布提取的均方根半径值在实验误差范围内一致,也进一步验证了17B的晕结构。采用Woods-Saxon势来描述17B核外的价中子在核芯中形成的势场,通过解薛定鄂方程来求解价中子处于特定轨道的波函数。假设17B核外的价中子处于纯的s分波和d分波都不能很好地和实验结果符合。所以认为核外的价中子应该是混合组态,通过拟合实验结果求解出s分波谱学因子的值,证明核外的价中子处在2s1/2轨道的几率更大
Resumo:
实验利用束流衰减法测量了43.7AMeV丰中子核17B与C靶反应的总截面σR=(1724±93)mb.用零程Glauber计算,假定17B具有核芯15B和两个价中子结构,输入GG和GO密度分布,计算的激发函数曲线与该实验数据很好符合,输入描述稳定核双参数Fermi密度分布,不能得到与实验数据符合的结果,表明17B是核芯15B+2n的假定是合理的.并且中子密度分布表现较大空间扩展-晕结构特征.
Resumo:
在兰州重离子加速器国家实验室(HIRFL)放射性次级束流线(RIBLL)上,用束流透射法测量了丰中子奇异核17B与C靶反应的总截面.假定17B具有15B(核芯)+2n结构,采用Gauss+HO形式的密度分布和零力程Glauber模型进行计算的结果可以很好地拟合实验数据,并得出17B的密度分布有一个很大的弥散,表明17B是双中子晕核.
Resumo:
采用Boltzmann-Langevin方程研究了能量为35MeV/u的14Be,8He,6He,11Li,17B,11Be,19C与 12C靶的反应,计算了产生中子集团的截面,发现14Be与12C靶反应产生4n的截面与实验值符合得很好.通过这几个入射核与12C靶形成中子集团截面的对比,发现核的晕中子越多产生中子集团的截面越大,晕中子数相同时,质量数越大产生中子集团的截面越大.中子集团可能主要来自晕核子.
Resumo:
概要介绍了兰州重离子加速器放射性次级束流线(RIBLL1)及其部分实验成果.25P的鉴别,发现9C,12N,14B,23Al反应总截面和密度分布增大,符合测量17B的核芯15B的γ能谱.
Resumo:
Reactions of anhydrous LnCl(3) (Ln = Nd, Gd, Dy, Er, Yb) with 2 equiv of LiCp' in THF afford the lanthanocene complexes Of CP'(2)Ln(mu-Cl)(2)Li(THF)(2) (CP' = eta(5)-t-BuC5H4, Ln = Nd (1), Gd (2), Dy (3), Er (4), Yb (5); Cp'= 1,3-eta(5)-t-Bu2C5H3, Ln = Nd (6), Gd (7), Dy (8), Er (9), Yb (10)). The molecular structures of 7 and 8 were characterized by X-ray crystallographic analysis. In these complexes, two Cp' ring centroids and two it-bridging chloride atoms around the lanthanide atoms form a distorted tetrahedron. The insertion of elemental chalcogen E (E = S, Se) into Li-C bonds of dilithium o-carborane in THF solution afforded dimers of dilithium. dichalcogenolate carboranes, [(THF)(3)LiE2C2B10H10Li(THF)](2) (E = S (12a), Se (12b)), which were confirmed by a crystal structure analysis. Reactions Of Cp'(2)Ln(mu-Cl)(2)Li(THF)(2) (1-10) with 12a or 12b gave dinuclear complexes of the formula [Li(THF)(4)](2)[Cp'(2)LnE(2)C(2)B(10)H(10)](2) (Cp'= eta(5)-t-BuC5H4, E = S, Ln = Nd (13a), Gd (14a), Dy (15a), Er (16a), Yb (17a); E = Se, Ln = Nd (13b), Gd (14b), Dy (15b), Er (16b), Yb (17b); Cp'= 1,3-eta(5)-t-Bu2C5H3 E = S, Ln = Nd (18a), Gd (19a), Dy (20a), Er (21a), Yb (22a); E = Se, Ln = Nd (18b), Gd (19b), Dy (20b), Er (21b), Yb (22b)). According to the X-ray structure analyses, the dianions of 13a and 13b contain two o-carborane dichalcogenolate bridges, and each CP'2Ln fragment is attached to one terminal and two bridging chalcogen ligands. The central Ln(2)E(2) four-membered ring is not planar, and the direct metal-metal interaction is absent.