7 resultados para 161-979
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An elastoplastic constitutive relation is developed for meso damage of whisker-reinforced composites. A model is constructed that includes orientation distribution of whiskers and slip systems as well as interface and crystal sliding. Evolution of damage will be addressed. Given in Part I is the formulation while examples will be illustrated in Part II.
Resumo:
An experimental investigation of Benard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The velocity fields in the vertical cross-section are obtained by PIV. Flow patterns and/or temperature distributions on the horizontal interface are displayed by using thermal color liquid crystal (TLC), and the velocity distributions on the interface were also obtained with the help of the serial particle image of TCL. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers, and the convection styles are discussed.
Resumo:
本文第一部分介绍单组分流体的临界与超临界特性.主要内容为临界点的经典与标度状态方程;临界点异常特性的实验证据;热力学与输运性质的计算等等.第二部分介绍二元流体混合物的临界与超临界特性.第三部分介绍超临界气体萃取的工业应用.
Resumo:
本文在文献[1]的基础上,用严格的方法求解两端简支的夹层圆柱壳在均匀轴压下的轴对称失稳问题.内、外表层很薄弹性模量又大,按薄壳理论处理;夹心较厚弹性模量又相当小,横向剪切变形的影响必须考虑,在研究夹层壳的整体失稳尤其是局部失稳时,横向的拉伸和压缩变形也不可忽略,用数学弹性力学的方法处理.本文导得了可求解轴对称整体失稳和局部失稳临界载荷的超越方程,用数值计算的方法可算得临界载荷的最小值.对于整体失稳的情况,给出算例,与夹层壳理论的解作了比较.
Resumo:
本文从三维弹性力学出发,推导了四边均匀受压简支矩形板的临界载荷公式,并进行了数值计算与经典理论及考虑剪应变薄板理论进行了分析比较。
Resumo:
As the production of a new technique that can offer both good formability and high image clarity for texturing metal sheet, laser-textured sheet has attracted the attention of many manufacturers and users. Among the many subjects to be studied, plastic instability behaviour of the laser-textured sheet is one of most important to understand its ability in extending material ductility and to appropriately control this technique. Experimental investigations are carried out in this paper to study the macroscopic behaviour and microstructural mechanism of the laser-textured sheet, and comparison is made with the normal sheet taken from the same coil of metal sheet. It is demonstrated that, the difference in the behaviour of plastic instability obviously shows tendency to delay strain localization and the onset of thickness necking. Shear banding and internal void damage are spread to a much wider region in the sheet being laser-textured. The prestrained microcraters enforced on the surface of the textured sheet act as hardening spots, which are likely to share out deformation and inhibit the increasing rate of voiding, and eventually favouring the ductility of the material used.