11 resultados para 11A
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A DC-offset cancellation scheme in the 5GHz direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard is described in this paper. It uses the analog feedback loop to eliminate the DC-offset at the output of the double-balanced mixer. The mixer has a simulation voltage conversion gain of IMB at 5.2GHz, noise figure of 9.67dB, IIP3 of 7.6dBm. The solution provides 39.1dB reduction according to the leakage value at LO and mixer load resistors, the additional noise figure added to mixer is less than 0.9dB, the added power dissipation is 0.1mW and was fabricated in 60GHz 0.35 mu m SiGe BiCMOS technology.
Resumo:
A 5.2 GHz variable-gain amplifier (VGA) and a power amplifier (PA) driver are designed for WLAN IEEE 802.11a monolithic RFIC. The VGA and the PA driver are implemented in a 50 GHz 0.35 μm SiGe BiCMOS technology and occupy 1.12×1.25 mm~2 die area. The VGA with effective temperature compensation is controlled by 5 bits and has a gain range of 34 dB. The PA driver with tuned loads utilizes a differential input, single-ended output topology, and the tuned loads resonate at 5.2 GHz. The maximum overall gain of the VGA and the PA driver is 29 dB with the output third-order intercept point (OIP3) of 11 dBm. The gain drift over the temperature varying from -30 to 85℃ converges within±3 dB. The total current consumption is 45 mA under a 2.85 V power supply.
Resumo:
This paper presents a 5GHz double-balanced mixer with DC-offset cancellation circuit for direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard. The analog feedback loop is used, to eliminate the DC-offset at the output of the double-balanced mixer. The test results show that the mixer with DC-offset cancellation circuit has voltage conversion gain of 9.5dB at 5.15GHz, noise figure of 13.5dB, IIP3 of 7.6 dBm, 1.73mV DC-offset voltage and 67mW power with 3.3-V power supply. The DC-offset cancellation circuit has less than 0.1mm(2) additional area and 0.3mW added power dissipation. The direct conversion WLAN receiver has been implemented in a 0.35 mu m SiGe BiCMOS technology.
Resumo:
In this paper, a low-power, highly linear, integrated, active-RC filter exhibiting a multi-standard (IEEE 802.11a/b/g and DVB-H) application and bandwidth (3MHz, 4MHz, 9.5MHz) is present. The filter exploits digitally-controlled polysilicon resister banks and an accurate automatic tuning scheme to account for process and temperature variations. The automatic frequency calibration scheme provides better than 3% corner frequency accuracy. The Butterworth filter is design for receiver (WLAN and DVB-H mode) and transmitter (WLAN mode). The filter dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from 2.85-V supply. The dissipation of calibration consumes 2mA. The circuit has been fabricated in a 0.35um 47-GHz SiGe BiCMOS technology, the receiver and transmitter occupy 0.28-mm(2) and 0.16-mm(2) (calibration circuit excluded), respectively.
Resumo:
A low-cost low-power single chip WLAN 802.11a transceiver is designed for personal communication terminal and local multimedia data transmission. It has less than 130mA current dissipation, maximal 67dB gain and can be programmed to be 20dB minimal gain. The receiver system noise figure is 6.4dB in hige-gain mode.
Resumo:
A low-power, highly linear, multi-standard, active-RC filter with an accurate and novel tuning architec-ture is presented. It exhibits 1EEE 802. 11a/b/g (9.5 MHz) and DVB-H (3 MHz, 4 MHz) application. The filter exploits digitally-controlled polysilicon resistor banks and a phase lock loop type automatic tuning system. The novel and complex automatic frequency calibration scheme provides better than 4 comer frequency accuracy, and it can be powered down after calibration to save power and avoid digital signal interference. The filter achieves OIP3 of 26 dBm and the measured group delay variation of the receiver filter is 50 ns (WLAN mode). Its dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from a 2.85 V supply. The dissipation of calibration consumes 2 mA. The circuit has been fabricated in a 0.35μm 47 GHz SiGe BiCMOS technology; the receiver and transmitter filter occupy 0.21 mm~2 and 0.11 mm~2 (calibration circuit excluded), respectively.
Resumo:
提出了一种符合IEEE802.11a无线局域网的5GHz直下变频接收机解决直流漂移的方法.该方法利用双平衡混频器输出端的模拟反馈环路消除直流漂移.该混频器经过测试,在5.15GHz频率下具有9.5dB的转换增益,13.5dB的噪声系数和7.6dBm的三阶交调,在3.3V电源电压条件下67mW的功耗,以及1.73mV的直流漂移,并能使直流漂移减少76%.该方案及整个直下变频的WLAN接收机已经采用0.35μmSiGe BiCMOS工艺流片并测试.
Resumo:
坡地土壤降雨入渗、径流和侵蚀过程与土壤结构密切相关。试验样地为宁夏固原云雾山自然保护区的坡耕地、退耕6a、退耕11a(前8a放牧,后3a禁牧)和退耕16a坡地,室内测定土壤结构指标,野外采用基于径流-入流-产流方法的新型降雨仪器在17、43和56mm/h雨强下观测坡地土壤的入渗性能,分析土壤结构特征对入渗的影响。对土壤结构的稳定性指标、孔隙性指标和分形维数指标进行分析,结果表明,随着退耕年限的延长,土壤团聚体稳定性增强,土壤结构孔隙状况得到明显改善。模拟降雨结果显示,随着雨强的增大,退耕地的土壤入渗率增加,但坡耕地反而降低。退耕11a样地受放牧牲畜践踏影响,入渗性能最差。通过逐步回归分析可知,在17mm/h和56mm/h雨强下,影响土壤稳定入渗率的土壤结构因子主要是容重和有机碳含量,而在43mm/h雨强下主要是毛管孔隙度和非毛管孔隙度。土壤有机碳含量和孔隙状况的差异致使土壤结构特征不同,从而对入渗性能和过程产生明显的影响。
Resumo:
选择具有典型代表的辽宁北部平原区、河北坝上农牧交错区和渭北旱塬区农田防护林为研究对象 ,以主栽树种杨树林带为研究材料 ,针对每个特定类型区的主要自然灾害因子和防护目的 ,统计分析调查研究数据 ,确定了辽宁北部、河北坝上和渭北旱塬 3类型区农田防护林可持续集约经营模型的最优经营参数 .其中林带最适疏透度分别为 0 2 5~ 0 35、0 2 0~ 0 30和 0 2 75~ 0 375 ;主林带间距分别为 45 0~ 5 0 0m、2 0 0m和 2 0 0~2 5 0m ;副林带间距分别为 5 0 0~ 10 0 0m、5 0 0m和 35 0~ 45 0m ;林带带面宽度分别为 8m、9m和 4 5~ 8m ;林带行数分别为 3~ 4、6和 2~ 4;林带树木株行距分别为 2m× 1 5~ 3m、1 5m× 1 5m和 1 5~ 3m× 1 5~ 3m ,主栽树种的防护成熟龄分别为 15~ 16a、14~ 15a和 12~ 14a ;防护成熟期分别为 10a、10~ 11a和 12~ 14a ;最佳更新方式分别为隔带更新、半带嫁接更新和隔带更新 .
Resumo:
Novel microbiocides 2-(hydroxymethyl)benzo[d)isothiazol-3(2H)-one (7) and (3-oxobenzo[d]isothiazol-2(3H)-yl)methyl benzencarboxylates (11a-c) were synthesized in good yields, and their structures were characterized by means of H-1 NMR, MS, and elemental analysis. The new compounds were tested preliminarily in laboratory assays against the aquicolous bacteria including Escherichia coli, Staphyloccus aurueus, Vibrio alginolyticus, Aeromonas hydrophila, and Bacillus subtilis. The results show all the synthesized compounds have good antimicrobial activity. The antimicrobial activity of all the tested compounds against all test bacteria is >96.6% at the concentration of 10(-2) mg mL(-1). These compounds can be further developed for effective microbiocides in the future.