369 resultados para (B) IR spectroscopy
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The reactions of both thiophene and H2S onMo(2)C/Al2O3 catalyst have been studied by in situ FT-IR spectroscopy. CO adsorption was used to probe the surface sites of Mo2C/Al2O3 catalyst under the interaction and reaction of thiophene and H2S. When the fresh Mo2C/Al2O3 catalyst is treated with a thiophene/H-2 mixture above 473 K, hydrogenated species exhibiting IR bands in the regions 2800-3000 cm(-1) are produced on the surface, indicating that thiophene reacts with the fresh carbide catalyst at relatively low temperatures. IR spectra of adsorbed CO on fresh Mo2C/Al2O3 pretreated by thiophene/H-2 at different temperatures clearly reveal the gradual sulfidation of the carbide catalyst at temperatures higher than 473 K, while H2S/H-2 can sulfide the Mo2C/Al2O3 catalyst surface readily at room temperature (RT). The sulfidation of the carbide surface by the reaction with thiophene or H2S maybe the major cause of the deactivation of carbide catalysts in hydrotreating reactions. The surface of the sulfided carbide catalyst can be only partially regenerated by a recarburization using CH4/H-2 at 1033 K. When the catalyst is first oxidized and then recarburized, the carbide surface can be completely reproduced.
Resumo:
The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.
Resumo:
A new polyoxotungstate complex [Na-2(H2O)(8)][Na-8(H2O)(20)][Cu(en)(2)][W12O42] center dot 3 H2O (1) (en = ethylenediamine) has been synthesized in aqueous solution and characterized by elemental analysis, IR spectroscopy and TG analysis, together with a single crystal X-ray diffraction study. In compound 1, the Cu(en)(2)(2+) complex cation links the [W12O42](12-) anions to form a I D chain, and the ID chains are further interconnected with Na-8(H2O)(20)(8+) and Na-2(H2O)(8)(2+) cations to construct a new 3D framework.
Resumo:
In this paper, the binding of neutral red (NR) to bovine serum albumin (BSA) under physiological conditions has been studied by spectroscopy method including fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The Stern-Volmer fluorescence quenching constant (K-SV), binding constant (K-b) and the number of binding sites (It) were measured by fluorescence quenching method. Fluorescence experiments were also performed at different ionic strengths. It was found K-SV was ionic strength dependent, which indicated the electrostatic interactions were part of the binding forces. The distance r between donor (BSA) and acceptor (NR) was obtained according to Foster's non-radiative energy transfer theory. CD spectroscopy and FT-IR spectroscopy were used to investigate the structural information of BSA molecules on the binding of NR, and the results showed no change of BSA conformation in our experimental conditions.
Resumo:
The effect of rare-earth ion Er3+ On myoglobin(Mb) was studied by using Resonance Raman spectroscopy. The results show that with the variation of Er3+ concentrations, both the oxidation state and spin state of Mb are sensitive to the perturbation of Er3+. Er3+ added to Mb affects the oxidation and spin state synchronously. The structure-sensitive groups of Mb are more accessible to the Er3+ than other groups. According to the fluorometry and CD spectra studied and our results as mentioned above, we considered that Er3+ does not interact with heme directly, and Er3+ probably leads to the conformational changes of Mb due to the change of oxidation and spin state of Heme.
In situ IR spectroscopic studies on molybdenum nitride catalysts: active sites and surface reactions
Resumo:
Recent IR spectroscopic studies on the surface properties of fresh Mo2N/gamma-Al2O3 catalyst are presented in this paper. The surface sites of fresh Mo2N/gamma-Al2O3, both Modelta+ (0<δ<2) and N sites, are probed by CO adsorption. Two characteristic IR bands were observed at 2045 and 2200 cm(-1), due to linearly adsorbed CO on Mo and N sites, respectively. The surface N sites are highly reactive and can react with adsorbed CO to form NCO species. Unlike adsorbed CO on reduced passivated one, the adsorbed CO on fresh Mo2N/gamma-Al2O3 behaves similarly to that of group VIII metals, suggesting that fresh nitride resembles noble metals. It is found that the surface of Mo nitrides slowly transformed into sulfide under hydrotreating conditions, which could be the main reason for the activity drop of molybdenum nitride catalysts in the presence of sulfur-containing species. Some surface reactions, such as selective hydrogenation of 1,3-butadiene, isomerization of 1-butene, and hydrodesulfurization of thiophene, were studied on both fresh and reduced passivated Mo2N/gammaAl(2)O(3) catalysts using IR spectroscopy. The mechanisms of these reactions are proposed. The adsorption and reaction behaviors of these molecules on fresh molybdenum nitride also resemble those on noble metals, manifesting the unique properties of fresh molybdenum nitride catalysts. Mo and N sites are found to play different roles in the adsorption and catalytic reactions on the fresh Mo2N/gammaAl(2)O(3) catalyst. Generally, Mo sites are the main active sites for the adsorption and reactions of adsorbates; N sites are not directly involved in catalytic reactions but they modify the electronic properties of Mo sites.
Resumo:
Molybdenum phosphide (MoP) and supported molybdenum phosphide (MoP/gamma-Al2O3) have been prepared by the temperature-programmed reduction method. The surface sites of the MoP/gamma-Al2O3 catalyst were characterized by carbon monoxide (CO) adsorption with in situ Fourier transform infrared (FT-IR) spectroscopy. A characteristic IR band at 2037 cm(-1) was observed on the MoP/gamma-Al2O3 that was reduced at 973 K. This band is attributed to linearly adsorbed CO on Mo atoms of the MoP surface and is similar to IR bands at 2040-2060 cm(-1), which correspond to CO that has been adsorbed on some noble metals, such as platinum, palladium, and rhodium. Density functional calculations of the structure of molybdenum phosphides, as well as CO chemisorption on the MoP(001) surface, have also been studied on periodic surface models, using the generalized gradient approximation (GGA) for the exchange-correlation functional. The results show that the chemisorption of CO on MoP occurred mainly on top of molybdenum, because the bonding of CO requires a localized mininum potential energy. The adsorption energy obtained is DeltaH(ads) approximate to -2.18 eV, and the vibrational frequency of CO is 2047 cm-1, which is in good agreement with the IR result of CO chernisorption on MoP/gamma-Al2O3.
Resumo:
The adsorption of CO on both nitrided and reduced passivated Mo(2)N catalysts in either alumina supported or unsupported forms was studied by adsorption microcalorimetry and infrared (IR) spectroscopy. The CO is adsorbed on nitrided Mo(2)N catalysts on three different surface sites: 4-fold vacancies, Mo(delta+) ( 0 < delta < 2) and N sites, with differential heats of CO adsorption decreasing in the same order. The presence of the alumina-support affects the energetic distribution of the adsorption sites on the nitrided Mo(2)N, i.e. weakens the CO adsorption strength on the different sites and changes the fraction of sites adsorbing CO in a specific form, revealing that the alumina supported Mo(2)N phase shows lower electron density than pure Mo(2)N. On reduced passivated Mo(2)N catalysts the CO was found to adsorb mainly on Mo(4+) sites, although some slightly different surface Mo(delta+) d (0 < delta < 2) sites are also detected. The nature, density and distribution of surface sites of reduced passivated Mo(2)N/gAl(2)O(3) were similar to those on reduced MoO(3)/gamma-Al(2)O(3).
Resumo:
The structure and stability of magnesia-supported copper salts of molybdovanadophosphoric acid (Cu2PMo11VO40) were characterized by different techniques. The catalyst was prepared in ethanol by impregnation because this solvent does not hurt texture of the water-sensitive MgO and Cu2PMo11VO40. The Keggin-type structure compound may be degraded partially to form oligomerized polyoxometalate when supported on MgO. However, the oligomers can rebuild as the Keggin structure again after thermal treatment in air or during the reaction. Meanwhile, the V atoms migrate out of the Keggin structure to form a lacunary structure, as observed by Fourier transform IR spectroscopy. Moreover, the presence of Cu2+ as a countercation showed an affirmative influence on the migration of V atoms, and the active sites derived from the lacunary species generated after release of V from the Keggin anion. The electron paramagnetic resonance data imply that V5+ autoreduces to V4+ in the fresh catalyst, and during the catalytic reaction a large number of V4+ ions are produced, which enhance the formation of O2- vacancies around the metal atoms. These oxygen vacancies may also improve the reoxidation function of the catalyst. This behavior is correlated to higher catalytic properties of this catalyst. The oxidative dehydrogenation of hexanol to hexanal was studied over this catalyst.
Resumo:
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (11) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min(-1) sample loading rate. The detection limit was 0.2 ng L-1 and much lower than that of conventional method (around 15.8 ng L-1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L-1 of Hg and the linear working curve is from 20 to 2000 ng L-1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.
Resumo:
In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.