434 resultados para translational-vibrational energy transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive homogenous time-resolved fluoroimmunoassay (TR-FIA) method for bensulfuron-methyl (BSM) based on fluorescence resonance energy transfer (FRET) from a Tb3+ fluorescent chelate with N,N,N',N'-[2,6-bis(3'-aminomethyl-1'-pyrazoly)-4-phenylpyridine] tetrakis(acetic acid) (BPTA-Tb3+) to organic dye, Cy3 or Cy3.5 has been developed. New method combined the use of BPTA-Tb3+ labeled streptavidin, Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody and biotinylated BSM-BSA conjugate (BSA is bovine serum albumin) for competitive-type immunoassay. After BPTA-Tb3+ labeled streptavidin was reacted with a competitive immune reaction solution containing biotinylated BSM-BSA, BSM sample and Cy3 or Cy3.5 labeled anti-BSM monoclonal antibody, the sensitized and long-lived emission of Cy3 or Cy3.5 derived from FRET was measured, and thus the concentration of BSM in sample was calculated. The present method has the advantages of rapidity, simplicity and high sensitivity since the B/F (bound reagent/free reagent) separation steps and the solid-phase carrier are not necessary. The method gives the detection limit of 2.10 ng ml(-1). The coefficient variations of the method are less than 1.5% and the recoveries are in the range of 95-105% for BSM water sample measurement. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intra- and intermolecular relaxations of dye molecules are studied after the excitation to the high-lying excited states by a femtosecond laser pulse, using femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD). The biexponential decays indicate a rapid intramolecular vibrational redistribution (IVR) depopulation followed by a slower process, which was contributed by the energy transfer to the solvents and the solvation of the excited solutes. The time constants of IVR in both oxazine 750 and rhodamine 700 are at the 290-360 fs range, which are insensitive to the characters of solvents. The solvation of the excited solutes and the cooling of the hot solute molecules by collisional energy transfer to the surrounding takes place in the several picoseconds that strongly depend on the properties of solvents. The difference of Lewis basicity and states density of solvents is a possible reason to explain this solvent dependence. The more basic the solvent is, which means the more interaction between the solute and the neighboring solvent shell, the more rapid the intermolecular vibrational excess energy transfer from the solute to the surroundings and the solvation of the solutes are. The higher the states density of the solvent is, the more favorable the energy transfer between the solute and solvent molecules is.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The different ions doped KMgF3 single crystals are prepared by the vertical Bridgman method. The near-infrared absorption spectra for different parts of all as-growth crystals indicate that there is the best transparency in middle part. The correlation between the vibronic frequencies of Eu2+ and the site displacement of Cu+ co-doped ions is firstly studied, which indicates that Cu+ ions replace the site of the Mg2+ ions. The co-doped Eu2+ counteracts the charge misfit causing by the replacement of Mg2+ with Cu+. The overlapping of the emission spectra of the Eu2+ and the excitation spectra of the Cu+ results in the energy transfer from Eu2+ to Cu+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the case of suspension flows, the rate of interphase momentum transfer M(k) and that of interphase energy transfer E(k), which were expressed as a sum of infinite discontinuities by Ishii, have been reduced to the sum of several terms which have concise physical significance. M(k) is composed of the following terms: (i) the momentum carried by the interphase mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii) the interphase force produced by the concentration gradient of the dispersed phase in a pressure field. And E(k) is composed of the following four terms, that is, the energy carried by the interphase mass transfer, the work produced by the interphase forces of the second and third parts above, and the heat transfer between phases. It is concluded from the results that (i) the term, (-alpha-k-nabla-p), which is related to the pressure gradient in the momentum equation, can be derived from the basic conservation laws without introducing the "shared-pressure presumption"; (ii) the mean velocity of the action point of the interphase drag is the mean velocity of the interface displacement, upsilonBAR-i. It is approximately equal to the mean velocity of the dispersed phase, upsilonBAR-d. Hence the work terms produced by the drag forces are f(dc) . upsilonBAR-d, and f(cd) . upsilonBAR-d, respectively, with upsilonBAR-i not being replaced by the mean velocity of the continuous phase, upsilonBAR-c; (iii) by analogy, the terms of the momentum transfer due to phase change are upsilonBAR-d-GAMMA-c, and upsilonBAR-d-GAMMA-d, respectively; (iv) since the transformation between explicit heat and latent heat occurs in the process of phase change, the algebraic sum of the heat transfer between phases is not equal to zero. Q(ic) and Q(id) are composed of the explicit heat and latent heat, so that the sum Q(ic) + Q(id)) is equal to zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optoacoustic signal generated by pulsed 10.6 c infrared radiation incident upon a test cell filled with gaseous SF6 has been analyzed in detail. The effects ofm icroscopic energy transfer from the absorbing vibrational degrees of freedom, spontaneous emission, thermal conduction, and acoustic wave propagation are included. This complete treatment explains the experimental observations including a negative pressure response following irradiation at low gas pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the measured values of vibrational temperature behind strong shock waves are compared with theoretical ones. The histories of vibrational temperature behind strong shock waves in a shock tube were measured using two monochromators. The test gas was pure nitrogen at 100-300Pa, and the speeds of shock waves were 5.0-6.0km/s. The electronic temperature of N-2(+) was also approximately determined from experiment and compared with the experimental vibrational temperature. The results show that the presented calculational method is effective, and the electronic energy of N2+ is excited much faster than its vibrational energy. One Langmuir probe was used to determine the effective time of region 2. The influence of viscosity in the shock tube is also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica spheres doped with Eu(TTFA)(3) and/or Sm(TTFA)(3) were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an average diameter of about 210 nm. Fluorescence spectrometer was used to analyze the fluorescence properties of hybrid spheres. The results show that multiple energy transfer processes are simultaneously achieved in the same samples co-doped with Eu (TTFA)(3) and Sm(TTFA)(3), namely between the ligand and Eu3+ ion, the ligand and Sm3+ ion, and Sm3+ ion and Eu3+, ion. Energy transfer of Sm3+-> Eu3+, in the hybrid spheres leads to fluorescence enhancement of Eu3+ emission by approximately an order of magnitude. The lifetimes of the hybrid spheres were also measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand Hhfth [4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dione], which contains a heptafluoropropyl group, has been used to synthesize several new ternary lanthanide complexes (Ln = Er, Ho, Yb, Nd) in which the synergistic ligand is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy). The two series of complexes are [Ln(hfth)(3)phen] [abbreviated as (Ln)1, where Ln = Er, Ho, Yb] and [Ln(hfth)(3)bipy] [abbreviated as (Ln)2, where Ln = Er, Ho, Yb, Nd]. Members of the two series have been structurally characterized. The growth morphology, diffuse reflectance (DR) spectra, thermogravimetric analyses, and photophysical studies of these complexes are described in detail. After ligand-mediated excitation of the complexes, they all show the characteristic near-infrared (NIR) luminescence of the corresponding Ln(3+) ions (Ln = Er, Ho, Yb, Nd). This is attributed to efficient energy transfer from the ligands to the central Ln(3+) ions, i.e. an antenna effect. The heptafluorinated substituent in the main hfth sensitizer serves to reduce the degree of vibrational quenching. With these NIR-luminescent lanthanide complexes, the luminescent spectral region from 1300 to 1600 nm, which is of particular interest for telecommunication applications, can be covered completely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infrared spectra of BaLnB(9)O(16):Re, along with the VUV excitation spectra, have been measured. The spectra were tentatively interpreted in terms of the data on absorptions of the borate groups and band structure. It was observed that there are absorption due to BO3 and BO4 groups, indicating that there are BO3 and BO4 groups in BaLnB(9)O(16). It is found that absorption of the borate groups is located in the range from 120 to 170 mn. This result reveals that there is an energy transfer from host to the rare earth ions. It also observed that the energy of charge transfer band, the host absorption, the total crystal field splitting of d-levels of Tb3+ increase with the decrease in the Ln(3+) radius. (C) 2001 Elsevier Science B.V. All rights reserved.