241 resultados para thermogravimetric analysis (TGA), viscoelasticity, x-ray photoelectron spectroscopy (XPS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry. Compared with the adsorption of Cyt c on DNA monolayer, this composite multilayer film can obviously enhance the amount of immobilized Cyt c confirmed by SPR reflectivity-incident angle (R-theta) curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material formulated as Ce5.2Sm0.8-xPrxMo15-(delta) (x=0.08) was prepared by adding small amounts of Pr dopant in oxide Ce5.2SM0.8-xPrxMoO15-delta. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and AC impedance spectroscopy. The effect of small amounts of Pr on microstructure and electrical conductivity was discussed. It was showed that the material doped with Pr has a lot of dents and small openings, which provide channels for oxygen ions, resulting in lower grain boundary and total conductivity activation energy. Thus the corresponding grain boundary conductivity and total conductivity of the material were improved notably. The grain boundary conductivity of the material doped with Pr is 6.79 X 10(-3) S center dot cm(-1) at 500 degrees C, which is twice as large as that without Pr (5.61 X 10(-5) S center dot cm(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of solid state electrolytes, Ce-5.2 RE0.8 MoO15-delta (RE = Y, La, Sm, Gd, Dy, Ho, Er), were synthesized by sol-gel method. Their structures and electrical conductivities were characterized by X-ray Diffraction (XRD), Raman and X-ray Photoelectron Spectroscopy (XPS) and AC impedance spectroscopy, respectively. The results show that the concentrations of oxygen vacancy increased with increasing x and their conductivity were improved. And the cell parameters increase as the radius of RE3+ increases. Because the ionic radius of doped Dy3+ (0.0908 nm) is closed to that of Ce4+ (0.0920 nm), their oxide has minimal cell elastic straining between RE3+ and oxygen vacancy, and the system has the least association enthalpy, thus the oxide Ce-5.2 Dy-0.8 MoO15-delta exhibits a higher conductivity (7.02 x 10(-3) S/cm) and lower activation energy (1.056 eV) compared to the other doped compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodispersed nanoparticles of Ag(I)-polymer hybrids have been prepared by using designed crown-ether-centred two-armed copolymers to chelate Ag+ ions at the interface of organic-aqueous solutions. The copolymer-Ag+ complex nanoparticles, as well as the reduced copolymer-Ag nanoparticles, have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). The particle size can be varied by simply changing the polymer concentration, the monomers, and/or the molecular weight. The copolymer-Ag(I) hybrids exhibit weak photoluminescence, which was substantially enhanced after the hybrids were reduced to copolymer-silver nanoparticles with UV irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new route based on electrospinning is designed for the preparation of silver chloride/polyacrylonitrile (AgCl/PAN) composite nanofibres. The AgCl nanoparticles uniform in size, were dispersed on the surfaces of the composite nanofibres. Transmission electron microscopy (TEM) images gave direct evidence of the structure. X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) confirmed the presence of AgCl crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supramolecular self-assembled monolayers (SAMs) of C-60 by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C-60 monoanion. The results indicate that monoanionic C-60 plays a crucial role in the formation of the C-60-containing self-assembled monolayers. The generation of C-60 monoanion and the formation process of C-60 SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C-60 SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C-60 by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C-60. The new C-60 SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C-60 on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C-60 over the thiolated beta-CD SAMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism, and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IrO2/SnO2 (10%:90%, molar ratio) electrodes (ITEs) were prepared by the sol-gel method as an alternative to the electrode-position and thermal decomposition process. The electrodes were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). From the results of XRD, oxide films prepared at low temperature were in amorphous state, while hydrous IrO2 crystal and cassiterite phase SnO2 were formed at 300 degreesC or even to 500 degreesC. The highly porous structure was confirmed by AFM. The electrochemical experiments demonstrated that the sol-gel method made the ITEs having a fast electron transfer process with good stability and the optimal preparation temperature was 400 degreesC for the highest electroactivity. Furthermore, the electrocatalysis of pyrocatechol on the electrodes was investigated. A quasi-reversible process occurred and a linear range over three orders magnitude (1 x 10(-2) - 10 mM) was obtained by differential pulse voltammetry (DPV). Meanwhile the detection limit of pyrocatechol was 5 x 10(-3) mM. This study indicated that the sol-gel method was an appropriate route to prepare the IrO2/SnO2 electrodes for the electrocatalytic of pyrocatechol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of crystallization on the lamellar orientation of poly( styrene)-b-poly(L-lactide) (PS-PLLA) semicrystalline diblock copolymer in thin films has been investigated by atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In the melt state, microphase separation leads to a symmetric wetting structure with PLLA blocks located at both polymer/substrate and polymer/air interfaces. The lamellar period is equal to the long period L in bulk determined by small-angle X-ray scattering (SAXS). Symmetric wetting structure formed in the melt state provides a model structure to study the crystallization of PLLA monolayer tethered on glassy (T-c < T-g,T-PS) or rubber (T-c > T-g,T-PS) PS substrate. In both cases, it is found that the crystallization of PLLA results in a "sandwich" structure with amorphous PS layer located at both folding surfaces. For T-c <= T-g,T- PS, the crystallization induces a transition of the lamellar orientation from parallel to perpendicular to substrate in between and front of the crystals. In addition, the depletion of materials around the crystals leads to the formation of holes of 1/2 L, leaving the adsorbed monolayer exposure at the bottom of the holes.