297 resultados para spectral property
Resumo:
The mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates were characterized using bulge testing combined with a refined load-deflection model for long rectangular membranes. Plane-strain modulus E-ps, prestress so, and fracture strength s(max) for 3C-SiC thin films with thickness of 0.40 mu m and 1.42 mu m were extracted. The E, values of SiC are strongly dependent on grain orientation. The thicker SIC film presents lower so than the thinner film due to stress relaxation. The s(max) values decrease with increasing film thickness. The statistical analysis of the fracture strength data were achieved by Weibull distribution function and the fracture origins were predicted.
Improvement of the electrical property of semi-insulating InP by suppression of compensation defects
Resumo:
Semi-insulating (SI) InP obtained by iron phosphide ambient annealing has very low concentration of deep level defects and better electrical property than SI-InP annealed in phosphorus ambient. The defect suppression phenomenon correlates with Fe diffusion and substitution in the annealing process. Analysis of the experimental result suggests that a high activation ratio of incorporated Fe in InP has an effect of defect suppression in Fe-doped and Fe-diffused SI-InP.
Resumo:
Nano-vanadium dioxide thin films were prepared through thermal annealing vanadium oxide thin films deposited by dual ion beam sputtering. The nano-vanadium dioxide thin films changed its state from semiconductor phase to metal phase through heating by homemade system. Four point probe method and Fourier transform infrared spectrum technology were employed to measure and anaylze the electrical and optical semiconductor-to-metal phase transition properties of nano-vanadium dioxide thin films, respectively. The results show that there is an obvious discrepancy between the semiconductor-to-metal phase transition properties of electrical and optical phase transition. The nano-vanadium dioxide thin films' phase transiton temperature defined by electrical phase transiton property is 63 degrees C, higher than that defined by optical phase transiton property at 5 mu m, 60 degrees C; and the temperature width of electrical phase transition duration is also wider than that of optical phase transiton duration. The semiconductor-to-metal phase transiton temperature defined by optical properties increases with increasing wavelength in the region of infrared wave band, and the occuring temperature of phase transiton from semiconductor to metal also increases with wavelength increasing, but the duration temperature width of transition decreases with wavelength increasing. The phase transition properties of nano-vanadium dioxide thin film has obvious relationship with wavelength in infrared wave band. The phase transition properties can be tuned through wavelength in infrared wave band, and the semiconductor-to-metal phase transition properties of nano vanadiium dioxide thin films can be better characterized by electrical property.
Resumo:
A pure surface plasmon polariton (SPP) model predicted that the SPP excitation in a slit-groove structure at metallodielectric interfaces exhibits an intricate dependence on the groove width P. Lalanne et al. [Phys. Rev. Lett. 95, 263902 (2005); Nat. Phys. 2, 551 (2006)]. In this paper, we present a simple far-field experiment to test and validate this interesting theoretical prediction. The measurement results clearly demonstrate the predicted functional dependence of the SPP coupling efficiency on groove width, in good agreement with the SPP picture.
Resumo:
This is a study on a certain group theoretic property of the set of encryption functions of a block cipher. We have shown how to construct a subset which has this property in a given symmetric group by a computer algebra software GAP4.2 (Groups, Algorithms, and Programming, Version 4.2). These observations on group structures of block ciphers suggest us that we may be able to set a trapdoor based on meet-in-the-middle attack on block ciphers.
Resumo:
The spectral bandwidth of three-wave-mixing optical parametric amplification has been investigated. A general mathematical model for evaluating the spectral bandwidth of optical parametric amplification is developed with parametric bandwidth and gain bandwidth via three-wave noncollinear interactions. The spectral bandwidth is determined by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order. The model takes into account the effects of crystal length, noncollinear angle, group velocity, group-velocity dispersion and gain coefficient. The relation between parametric bandwidth and gain bandwidth is clearly defined. The model is applied to a BBO OPA, a LBO OPA and a CLBO OPA.
Resumo:
A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wildtype rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wildtype. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.
Resumo:
Fulgides are one kind of organic photochromic compound, which are famous for their thermal irreversibility. In this report, from the difference spectra of the absorption A() of one kind of pyrrylfulgide, the spectral refractive index change n() was calculated by the Kramers-Kronig relation (KKR), and a good correlation of theoretically derived values and the experimental values of the n measured by a modified Michelson interferometer was found. Further, it is demonstrated that it was possible to calculate the spectral dependence of diffraction efficiency from the easily accessible absorption changes. This method will be a useful tool for the characterization and optimization of fulgide films. The results show that the diffraction efficiency is high at 488 and 750 nm, where the absorption is very small, so we can realize non-destructive reconstruction.
Resumo:
An ultra-fast electron diffraction system has been designed. The static and dynamic characters of an electron pulse with 150 fs temporal dispersion are studied during its transmission in the whole ultra-fast electron diffraction system, including the size of the electron spot, temporal dispersion, distribution of azimuths and elevation angles. The initial status of the photoelectrons are put down by Monte Carlo method, both the two dimensional and three dimensional electric fields are calculated by finite difference method and the magnetic flux are. calculated by finite element method.
Resumo:
A novel inorganic-organic hybrid hydrophobic anti-reflection silica film used for laser crystal was obtained by sol-gel process. The film consisted of silica sols mixed with a small amount of polymethyl methacrylate (PMMA) or polystyrene (PS). The optical transparency, hydrophobic property and surface morphology of the film were characterized by UV-VIS-NIR spectrophotometer; contact angle instrument and Scanning Electron Microscopy (SEM), respectively. The results showed that the anti-reflection coating had good hydrophobility and optical transparency from 400 nm to 1200 nm. The contact angle reached to 130-140 degrees. SEM images indicated the hydrophobic films modified with PMMA or PS had compact structure compared to the pure silica sol film. (C) 2008 Elsevier B.V. All rights reserved.