136 resultados para plate equation
Resumo:
In the theoretical study on equation of state for polymers, much attention has been paid to the polymer in liquid state, but less to that in solid state. Therefore, some empirical and semi-empirical equations of state have been used to describe its pressure-volume-temperature (P-V-T) relations.
Resumo:
We report new geophysical and petrological data collected at the southern tip of the Parece Vela Basin in the Philippine Sea. The Parece Vela Basin, which was formed as a backarc basin behind proto Mariana arc-trench system from late Oligocene to middle Miocene, provides us a good opportunity to study the nature of successive backarc basin formations in the Philippine Sea and the relationship between are and backarc magmatisms. Regional bathymetric map derived from satellite altimetry shows that the southern tip of the basin, now located just west of the Yap arc-trench system, has unique morphological and tectonic features which include: 1) the absence of spreading center or its trace, 2) shallow average depth, and 3) enigmatic curved structures. Our newly collected high-resolution bathymetric data reveal that the spreading fabric similar to the central Parece Vela Basin exists to the north of 9 degrees 20'N. Thus it appears that the present-day Yap arc and backarc region represent the western half of the seafloor that was produced by the early E-W and the following NE-SW spreading in the northern and central Parece Vela Basin, and that the eastern counterpart now lies west of the West Mariana Ridge. Unlike the northern Parece Vela Basin, there appears to be no evidence for a systematic propagation of spreading center in the southern part. Instead two rift segments, one which extends from the central Parece Vela Basin and the other which lies within the western remnant arc (Kyushu-Palau Ridge), overlap at the southern tip of the basin, producing a complex seafloor that includes curvilinear deeps and deformed topographic highs. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bagnold-type bed-load equations are widely used for the determination of sediment transport rate in marine environments. The accuracy of these equations depends upon the definition of the coefficient k(1) in the equations, which is a function of particle size. Hardisty (1983) has attempted to establish the relationship between k(1) and particle size, but there is an error in his analytical result. Our reanalysis of the original flume data results in new formulae for the coefficient. Furthermore, we found that the k(1) values should be derived using u(1) and u(1cr) data; the use of the vertical mean velocity in flumes to replace u(1) will lead to considerably higher k(1) values and overestimation of sediment transport rates.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.
Resumo:
For some species, hereditary factors have great effects on their population evolution, which can be described by the well-known Volterra model. A model developed is investigated in this article, considering the seasonal variation of the environment, where the diffusive effect of the population is also considered. The main approaches employed here are the upper-lower solution method and the monotone iteration technique. The results show that whether the species dies out or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the hereditary effects. The evolution of the population may show asymptotic periodicity, provided a certain condition is satisfied for the above factors. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The main aim of this paper is to investigate the effects of the impulse and time delay on a type of parabolic equations. In view of the characteristics of the equation, a particular iteration scheme is adopted. The results show that Under certain conditions on the coefficients of the equation and the impulse, the solution oscillates in a particular manner-called "asymptotic weighted-periodicity".
Resumo:
Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio epsilon, represented by the ratio of amplitude to depth, and the dispersion ratio mu, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(mu(2)). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
Resumo:
An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.
Resumo:
The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A compact plate-fin reformer (PFR) consisting of closely spaced plate-fins, in which endothermic and exothermic reactions take place in alternate chambers, has been studied. In the PFR, which was based on a plate-fin heat exchanger, catalytic combustion of the reforming gas, as a simulation of the fuel cell anode off gas (AOG), supplied the necessary heat for the reforming reaction. One reforming chamber, which was for hydrogen production, was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. The PFR is very compact, easy to be placed and scaled up. The effect of the ratio of H2O/CH3OH on the performance of the PFR has been investigated, and temperature distributions in different chambers were studied. Besides, the stationary behavior of the PFR was also investigated. Heat transfer of the reformer was enhanced by internal plate-fins as well as by external catalytic combustion, which offer both high methanol conversion ratio and low CO concentration. In addition, the fully integrated reformer exhibited good test stability. Based on the PFR, a scale-up reformer was designed and operated continuously for 1000 h, with high methanol conversion ratio and low CO concentration. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.