262 resultados para phosphorus sensitive plants
Resumo:
This study aimed to investigate the allelopathic activities between 3 Potamogeton spp. (Potamogeton maackianus, Potamogeton malaianus and Potamogeton pectinatus) and the toxic cyanobacteria (Microcystis aeruginosa). All Potamogeton spp inhibited the growth of M. aeruginosa in both coexistence and exudates experiments. Inhibition of M. aeruginosa growth by plant exudates depended strongly on the biomass of P malaianus. Initial pH (6.5-9.8) did not influence the inhibitory effects of P. malaianus exudates. However, the M. aeruginosa inhibited the net photosynthesis and respiration of all three pondweed test spp.. The decreases in photosynthesis and respiration were probably caused by the toxic compounds released by M. aeruginosa, rather than its shading effects. The M. aeruginosa also decreased the nutrients (phosphorus and nitrogen) uptake rates of macrophytes. The absorption rates of phosphorus and nitrogen and net photosynthesis were decreased sharply. These results will help to restore submerged plants in eutrophic waters.
Resumo:
A limnological study was carried out to determine the responses of superoxide dismutase (SOD) activities and soluble protein (SP) contents of 11 common aquatic plants to eutrophication stress. Field investigation in 12 lakes in the middle and lower reaches of the Yangtze River was carried out from March to September 2004. Our results indicated that non-submersed (emergent and floating-leafed) plants and submersed plants showed different responses to eutrophication stress. Both SOD activities of the non-submersed and submersed plants were negatively correlated with their SP contents (P < 0.000 1). SP contents of non-submersed plants were significantly correlated with all nitrogen variables in the water (P < 0.05), whereas SP contents of submersed plants were only significantly correlated with carbon variables as well as ammonium and Secchi depth (SD) in water (P < 0.05). Only SOD activities of submersed plants were decreased with decline of SD in water (P < 0.001). Our results indicate that the decline of SOD activities of submersed plants were mainly caused by light limitation, this showed a coincidence with the decline of macrophytes in eutrophic lakes, which might imply that the antioxidant system of the submersed plants were impaired under eutrophication stress.
Resumo:
The concentrations of alkylphenols (APs) were investigated in water, sediments and submersed macrophytes from the Moon Lake, Wuhan city, China. The water samples contained APs, ranging up to 26.4 mu g l(-1) for nonylphenol (NP) and 0.68 mu g l(-1) for octylphenol (OP). APs were found in the sediment samples with concentrations ranging from 4.08 to 14.8 for NP and from 0.22 to 1.25 mu g l(-1) dry weight for OP. The samples from the site near former sewage inlet showed the highest concentrations of APs in both water and sediments. The results of distribution pattern and dynamics of NP and OP in submersed macrophytes of the Moon Lake showed that the two pollutants were all found in Myriophyllum verticillatum, Elodea nuttallii, Ceratophyllum oryzetorum, and Potamageton crispus collected from the Moon Lake. For NP, M. verticillatum had the highest capacity of accumulation, followed by E. nuttallii, C. oryzetorum and P. crispus. However the distribution pattern of OP differed from that of NP, and the highest amount of accumulation was observed in E. nuttallii, followed by M. verticillatum, P. crispus, and C. oryzetorum. The temporal pattern of APs was also observed in submersed macrophytes from March to May, and the highest accumulation period was in May. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A growth trial was conducted to estimate the optimum requirement of dietary available phosphorus (P) for black seabream (Sparus macrocephalus) in indoor net cages (1.5x1.0x1.0 m). Triplicate groups of black seabream (11.45 +/- 0.02 g) were fed diets containing graded levels (0.18, 0.36, 0.54, 0.72, 0.89 and 1.07%) of available P to satiation for 8 weeks. The basal diet (diet 1), containing 0.18% available P, was supplemented with graded levels of monosodium phosphate (NaH2PO4 2H(2)O) to formulate five experimental diets. The fish were fed twice daily (08:00 h and 16:00 h) and reared in seawater (salinity, 26-29 g l(-1)) at a temperature of 28 +/- 1 degrees C. Dissolved oxygen during the experiment was above 5 mg l(-1). The specific growth rate (SGR), weight gain (WG), feed efficiency (FE) and protein efficiency ratio (PER) were all significantly improved by dietary phosphorus up to 0.54% (P<0.05) and then leveled off beyond this level. Hepatosomatic index (HSI) was inversely correlated with dietary phosphorus levels (P< 0.05). Efficiency of P utilization stabled in fish fed diets containing 0.18%-0.54% available P and then decreased dramatically with further supplementation of dietary phosphorus. Body composition analysis showed that the whole-body lipid, ash, calcium and phosphorus contents were all significantly affected by dietary available P concentration (P<0.05), however, no significance were found in whole-body calcium/phosphorus (Ca/P) ratios among all the treatments (P>0.05). Dietary phosphorus levels also affected the mineralization of vertebrae, skin and scale (P<0.05). Ca/P ratios in vertebrae and scale were not influenced by dietary P supplementation, while skin Ca/P ratio increased statistically with dietary available P levels (quadratic effect, P<0.001). The blood chemistry analysis showed that dietary available P had distinct effects on enzyme activities of alkaline phosphatase (ALP) and plasma lysozyme (LSZ), as well as contents of triacyglycerol (TG) and total cholesterol (T-CHO) (P<0.05). Broken-line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 0.55%. Quadratic analysis based on P contents in whole fish, vertebrae or scale indicated that the requirements were 0.81, 0.87 and 0.88%, respectively. Signs of phosphorus deficiency were characterized by poor growth, slightly reduced mineralization and an increase in body lipid content. (C) 2008 Published by Elsevier B.V.
Resumo:
The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003-2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)-P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87-95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)-P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)-P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.
Resumo:
A comparative study was conducted to reveal the differentiate effects of eight different filter media including gravel, zeolites, anthracite, shale, vermiculite, ceramic filter media, blast furnace steel slag and round ceramsite. The study mainly related to the eight different filter media's removal performances of organic matter, nitrogen and phosphorus in the vertical flow constructed wetland simulated system, which treating wastewater at hydraulic loading rate of 1000-2500 mm/d. The results indicated that the removal effects were closely related to the physical and chemical properties of medium materials. Anthracite-filled system had the highest removal rate for the total organic carbon (TOC), up to 70%, and the removal rates of other systems ranged from 20% to 30%. As for the five-day biochemical oxygen demand (BOD5), anthracite-filled and steel slag-filled systems had the highest removal rates, also up to 70%, as well as other systems all exceeded 50%. At the same time, for the total nitrogen (TN) and NH4(+)-N, the zeolites-filled and ceramic-filled systems had the best performances with the removal rates of more than 70%, the other way round, the removal rates of other systems were only about 20%. The distinguishable effects were also observed in removal performances of total phosphorus (TP) and total dissoluble phosphorus (TDP). The removal rates of TP and TDP in steel slag-filled systems were more than 90%, a much higher value, followed by that of the anthracite-filled system, more than 60%, but those of other systems being the less. Our study provided a potential mechanism to optimize the filter media design for the vertical flow constructed wetlands.
Resumo:
The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads, such as soluble reactive phosphorus (SRP) and total phosphorus (TP), as well as the main elements of sediment extracts in Dianchi Lake. Several strongly reducing substances in sediments, which mainly originated from anaerobic decomposition of primary producer residues, were responsible for the lower redox potential. In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water. Redox potentials exceeding 320 mV caused increases in TP, whereas SRP maintained a relatively constant minimum level. The concentrations of Al, Fe, Ca2+, Mg2+, K+, Na+ and S in interstitial water were also related to the redox potential of sediments, suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex.
Resumo:
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular ( 4 strains) and colonial ( 4 strains) Microcystis strains to phosphorus ( P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l - 1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P- starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P- limited conditions, the oxygen evolution rate, Fv/ Fm, and ETRmax were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions.
Resumo:
Phosphorus removal performance and a possible mechanism for the phosphorus removal from an eutrophic lake water were investigated using a medium-scale integrated vertical constructed wetland (combined vertical and reverse-vertical systems) from April, 11, 2001 to September, 28, 2004. Environmental factors affecting phosphorus removal and release profiles were monitored simultaneously under hydraulic loads from 400 to 2000 mm per day. The phosphorus removal rate varied with the environmental conditions. The removal rate for acidic influent water was superior to that for alkaline influent water. The substrate in the wetland chamber acted as a buffer to regulate the pH value of the water sample. As regards the water temperature, no significant differences were observed for the removal rate of total phosphorus (TP) and soluble reactive phosphorus (SRP) between low (lower than 15 degrees C) medium (16-25 degrees C) and high temperature (higher than 26 degrees C) conditions. Under a hydraulic load of 400 mm per day, the removal rate reached over 70%, the highest value achieved in this work. In addition, the highest hydraulic load of 2000 mm/d did not result in the lowest removal rate, as had been expected. After a two-year high hydraulic load test, the removal rate decreased significantly. Phosphorous release from the substrate was examined using a spatial sampling method. Depth profiles of total phosphorus and different states of phosphorus present in the substrate were recorded. This further study demonstrated that binding of phosphorus by iron and calcium might be another major factor in the removal and release of TP and SRP in this wetland system. The distribution of the speciated phosphorus showed that the amount of phosphorus captured in the substrate of the down-flow chamber was significantly higher than that captured in the up-flow chamber, suggesting that the up-flow chamber was the main source of phosphorus release in this constructed wetland.
Resumo:
The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.
Resumo:
There is increasing recognition that protozoa is very useful in monitoring and evaluating water ecological healthy and quality. In order to study the relationship between structure and function of protozoan communities and water qualities, six sampling stations were set on Lake Donghu, a hypereutrophic subtropical Chinese lake. Microbial communities and protists sampling from the six stations was conducted by PFU (Polyurethane foam unit) method. Species number (S), diversity index (DI), percentage of phytomastigophra, community pollution value (CPV), community similarity and heterophy index (HI) were mensurated. The measured indicators of water quality included total phosphorus (TP), dissolved oxygen (DO), Chemical oxygen demand (COD), NH4 (+), NO2 (-) and NO3-. Every month water samples from stations I, II, III, IV were chemically analyzed for a whole year, Among the chemically analyzed stations, station I was the most heavily polluted, station II was the next, stations III and IV had similar pollution degrees. The variable tendencies of COD, TP, NH3, NO2-, NO3-, and DO during the year was approximately coincident among the six stations. Analysis from the community parameters showed that the pollution of station 0 was much more serious than others, and station V was the most slight. Of the community parameters, CPV and HI were sensitive in reflecting the variables of the water quality. Community similarity index was also sensitive in dividing water qualities and the water quality status of different stations could be correctly classified by the cluster analysis. DI could reflect the tendency of water quality gradient, species number and percentage of Phytomastigophora was not obvious in indicating the water quality gradient.
Resumo:
In an effort to develop cultured cell models for toxicity screening and environmental biomonitoring, we compared primary cultured gill epithelia and hepatocytes from freshwater tilapia (Oreochromis niloticus) to assess their sensitivity to AhR agonist toxicants. Epithelia were cultured on permeable supports (terephthalate membranes, "filters") and bathed on the apical with waterborne toxicants (pseudo in vivo asymmetrical culture conditions). Hepatocytes were cultured in multi-well plates and exposed to toxicants in culture medium. Cytochrome P4501A (measured as 7-Ethoxyresorufin-O-deethylase, EROD) was selected as a biomarker. For cultured gill epithelia, the integrity of the epithelia remained unchanged on exposure to model toxicants, such as 1,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene B[a]P, polychlorinated biphenyl (PCB) mixture (Aroclor 1254), and polybrominated diphenyl ether (PBDE) mixture (DE71). A good concentration-dependent response of EROD activity was clearly observed in both cultured gill epithelia and hepatocytes. The time-course response of EROD was measured as early as 3 h, and was maximal after 6 h of exposure to TCDD, B [alp and Aroclor 1254. The estimated 6 h EC50 for TCDD, B [a]P, and Aroclor 1254 was 1.2x10(-9), 5.7x10(-8) and 6.6x10(-6) M. For the cultured hepatocytes, time-course study showed that a significant induction of EROD took place at 18 h, and the maximal induction of EROD was observed at 24 h after exposure. The estimated 24 It EC50 for TCDD, B[a]P, and Aroclor 1254 was 1.4x10(-9), 8.1x10(-8) and 7.3x10(-6) M. There was no induction or inhibition of EROD in DE71 exposure to both gill epithelia and hepatocytes. The results show that cultured gill epithelia more rapidly induce EROD and are slightly more sensitive than cultured hepatocytes, and could be used as a rapid and sensitive tool for screening chemicals and monitoring environmental AhR agonist toxicants. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.
Resumo:
A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.