205 resultados para p53 genes
Resumo:
The orange-spotted grouper, Epinephelus coioides, is an important marine aquaculture fish, but its large-scale aquaculture has been hindered by the rarity of natural males because it is a protogynous hermaphroditic fish. Hypothalamus-pituitary-gonad is an important endocrine axis in regulating reproduction and sex differentiation. To reveal the molecular mechanism of hypothalamic physiological functions, we performed he studies on identification of genes expressed in the hypothalamus of male orange-spotted grouper using EST and RT-PCR strategy. A total of 1006 ESTs were sequenced, and 402 (39.96%) clones were identified as known genes and 604 (60.04%) as unknown genes. The 402 clones of known gene products represent transcripts of 18 1 genes. Moreover, the expression patterns of 26 unknown genes were analyzed in various tissues, such as liver, kidney, spleen, fat, heart, muscle, pituitary, hypothalamus, telencephalon, cerebellum, midbrain, medulla oblongata, ovary and testes. Five different categories of expression patterns were observed from them. Several unknown ESTs, such as DN551996, DN551998, DN552082, and DN552070, were detected to be hypothalamus-specific, brains-specific, or hypothalamus and gonad-specific genes. Interestingly, DN551996, not only exhibiting expression differences between ovary and testis, but also showing sex-dependent differences in hypothalamus of grouper, might play significant role in grouper reproduction or sex inversion. Further functional studies on these genes will provide more information on molecule regulation mechanism of sex inversion in groupers. (c) 2006 Elsevier B.V All fights reserved.
Resumo:
The insecticide dichlorodiphenyltrichloroethane (DDT) is persistent in the environment, and continues to cause health problems. Tetrahymena has potential as a model organism for assaying low levels of DDT and for analysing the mechanisms of its toxicity. We constructed the suppression subtractive hybridization library of T thermophila exposed to DDT, and screened out 90 Expressed Sequence Tags whose expressions were significantly up- or downregulated with DDT treatment. From this, a series of important genes related to the DDT metabolism and detoxification were discovered, such as P450 gene, glutathione S-transferase gene and sterol carrier protein 2 gene. Furthermore, their expressions under different concentrations of DDT treatment were detected by real-time fluorescent quantitative PCR. The results show that Tetrahymena is a relevant and useful model organism for detecting DDT in the environment and for discovering biomarkers that can be used to develop specific bio-reporters at the molecular and genomic levels.
Resumo:
Heat shock proteins (Hsps) are a family of highly conserved cellular proteins present in all organisms, mediating a range of essential housekeeping and cytoprotective functions as well-known molecular chaperons and recently as regulators of the immune response. By subtractive suppression hybridization, three Hsp40 homologues have been identified in the flounder (Paralichthys olivaceus) embryonic cells (FEC) after treatment with UV-inactivated turbot (Scophthalmus maximus L.) rhabdovirus (SMRV), termed PoHsp40A4, PoHsp40B6 and PoHsp40B11, whose encoded proteins all possess the conserved DnaJ domain, a signature motif of the Hsp40 family. Based on different protein structure and phylogenetic analysis, they can be categorized into two subfamilies, PoHsp40A4 for Type I Hsp40, PoHsp40B6 and PoHsp40B11 for Type 11 Hsp40. Further expression analysis revealed two very different types of kinetics in response either to heat shock or to virus infection, with a marked induction for PoHsp4OA4 and a weak one for both PoHsp40B6 and PoHsp40B11. A very distinct tissue distribution of mRNA was also revealed among the three genes, even between PoHsp40B6 and PoHsp40B11. This is the first report on the transcriptional induction of Hsp40 in virally stimulated fish cells, and the differential expressions might reflect their different roles in unstressed and stressed cells. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
TRAIL (Apo2 ligand) described as a type II transmembrame protein belonging to the TNF superfamily can induce apoptotic cell death in a variety of cell types. In the present study, a putative cDNA sequence encoding the 299 amino acids of TRAIL (GC-TRAIL) and its genomic organization were identified in grass carp Ctenopharyngodon idella. The predicted GC-TRAIL sequence showed 44 and 41% identities to chicken and human TRAILs, respectively. In a domain search, a tumor necrosis factor homology domain (THD) was identified in the C-terminal portion of TRAILs. The GC-TRAIL gene consists of five exons, with four intervening introns, spaced over approximately 4 kb of genomic sequence. Analysis of GC-TRAlL promoter region revealed the presence of a number of putative transcription factor binding sites, such as Sp1, NF-kappaB, AP-1, GATA, NFAT, HNF, STAT, P53 and IRFI sequences which are important for the expression of other TNF family members. Phylogenetic analysis placed GC-TRAIL and the putative zebrafish (Danio rerio) TRAIL obtained from searching the zebrafish database into one separate cluster near mammalian TRAIL genes, but apart from the reported zebrafish TRAIL-like protein, indicating that the GC-TRAIL is an authentic fish TRAIL. Expression analysis revealed that GC-TRAIL is expressed in many tissues, such as in gills, liver, trunk kidney, head kidney, intestine and spleen. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.
Resumo:
Unlike those of the wild-type strain, proheterocysts of the Anabaena sp. strain PCC 7120 hetC strain keep dividing. ftsZ, the most critical cell division gene, is up-regulated in hetC proheterocysts. Heterocyst differentiation genes hglD, hglE, patB, nijB, and xisA are no longer expressed in the hetC mutant. hetC also regulates the expression of patA, a pattern formation gene.
Resumo:
Rab proteins belong to the largest family of the Ras superfamily of small GTPase that play an important role in intracellular vesicular traffic. So far, almost 60 members of Rab family have been identified in mammalian cells. To further study the diversity and function of Rab protein in evolution, unicellular protozoa ciliates, Euplotes octocarinatus, were used in this study, Rab genes were screened by PCR method from macronuclear DNA of E. octocarinatus. Sixteen Rab genes were obtained. They share 87.6 - 99.5% identities. Highly conserved GTP-binding domains were found. There are some hot regions that diverse sharply in these genes as well.
Resumo:
The parasitic copepod Sinergasilus major is an important pathogen of grass carp Ctenopharyngodon idella. To understand the immune response of grass carp to the copepod infection, suppression subtractive hybridization method was employed to characterize genes up-regulation during the copepod infection in liver and gills of the fish. One hundred and twenty-two dot blot positive clones from infected subtracted library were sequenced. Searching available databases by using these nucleotide sequences revealed that 23 genes are immune-related, including known acute-phase reactants, and four novel genes encoding proteins such as source of immunodominant MHC-associated peptides (SIMP), TNF receptor-associated factor 2 binding protein (T2BP), poliovirus receptor-related protein 1 precursor, glycoprotein A repetitions predominant (GARP). The differential expression of seven immune genes, i.e. GARP, alpha-2-macroglobulin, MHC class I, C3, SIMP, T2BP, transferrin, as a result of infection was further confirmed by RT-PCR, with the up-regulation of alpha-2-macroglobulin, MHC class I, C3, SIMP and T2BP in the liver of infected fish, and down-regulation of SIMP in the gills of infected fish. The present study provides foundation for understanding grass carp immune response and candidate genes for further analysis.
Resumo:
A copper/zinc superoxide dismutase (Cu/ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene of the human parasite Clonorchis sinensis have been cloned and their gene products functionally characterized. Genes Cu/ZnSOD and MnSOD encode proteins of 16 kDa and 25.4 kDa, respectively. The deduced amino acid sequences of the two genes contained highly conserved residues required for activity and secondary structure formation of Cu/ZnSOD and MnSOD, respectively, and show up to 73.7% and 75.4% identities with their counterparts in other animals. The genomic DNA sequence analysis of Cu/ZnSOD gene revealed this as an intronless gene. Inhibitor studies with purified recombinant Cu/ ZnSOD and MnSOD, both of which were functionally expressed in Escherichia coli, confirmed that they are copper/zinc and manganese-containing SOD, respectively. Immunoblots showed that both C. sinensis Cu/ZnSOD and MnSOD should be antigenic for humans, and both, especially the C. sinensis MnSOD, exhibit extensive cross-reactions with sera of patients infected by other trematodes or cestodes. RT-PCR and SOD activity staining of parasite lysates indicate that there are no significant differences in mRNA level or SOD activity for both species of SOD, indicating cytosolic Cu/ZnSOD and MnSOD might play a comparatively important role in the C. sinensis antioxidant system.
Resumo:
Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The cDNAs and genes of two different types of leucine- rich repeat-containing proteins from grass carp ( Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced aminoacid sequence similarities with human glycoprotein A repetitions predominant precursor ( GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine- rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL ( x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod ( Sinergasilus major)- infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host - pathogen interactions.
Resumo:
In order to identify genes encoding the outer membrane proteins (OMPs) of the myxobacter Flavobacterium columnare G(4), the expression library of the bacterium was screened by using rabbit antisera developed against its OMPs. Positive colonies of Escherichia coli M15 containing fragments encoding the bacterial OMPs were selected for cloning the relevant genes by genomic walking methods. Two genes encoding a membrane-associated zinc metalloprotease and prolyl oligopeptidase are reported in this paper. The membrane-associated zinc metalloprotease gene (map) is 1800 bp in length, coding for 449 amino acids (aa). Despite the presence of a conserved motif HEXXH for all metalloproteases, the special HEXXH similar to 32 aa similar to E motif of the F. columnare G(4) Map and its low level of identity with other reported zinc-containing metalloproteases may imply that the membrane-associated zinc metalloprotease of F. columnare G(4) represents a new family of zincins. The gene encoding prolyl oligopeptidase (Pop), a serine proteinase, is 2352 bp in length, coding for 649 aa. Sequence homology analysis revealed that the Pop is also novel as it has <50% identity with other reported prolyl oligopeptidase family proteins. The present study represents the first to employ anti-fish bacterial OMP sera to screen genes of membrane-associated proteases of fish pathogenic bacteria, and to provide necessary information for the examination of the role of the two genes in the infection and pathogenesis of F. columnare.
Resumo:
Differential gene expression of mature and immature Bothriocephalus acheilognathi cestodes was analyzed using the suppression subtractive hybridization technique. Five mature-associated cDNAs were isolated and characterized. Virtual Northern blot and RT-PCR analyses confirmed that four of the five genes were up-regulated in mature parasites. The sequence analysis revealed that one gene encoded the structural protein chorion precursor, and that three encoded functional proteins homologous to yolk ferritin, sodium/hydrogen exchanger and muscin-like protein. Another gene appeared to be specific to B. acheilognathi, encoding a putative metal-bound protein. Although results obtained in the present study are preliminary, the information about the five genes may provide clues for further investigation on the decline in parasite numbers during the maturation of B. acheilognathi.
Resumo:
The sequences and gene organisation of two LEAP-2 molecules (LEAP-2A and LEAP-2B) from rainbow trout, Oncorhynchus mykiss are presented. Both genes consist of a 3 exon/2 intron structure, with exon sizes comparable to known mammalian genes. LEAP-2A notably differs from LEAP-2B in having larger introns and a larger 3'UTR. The predicted proteins contain a signal peptide and prodomain, followed by a mature peptide of 41 aa containing four conserved cysteines. The RXXR cleavage site to release the mature peptide was also conserved. Both genes were found to be constitutively expressed in the liver, with expression in the intestine, and to a lesser extent the skin, evident after bacterial challenge. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Gonadotropin-releasing hormone (GnRH) is a conservative neurodecapeptide family, which plays a crucial role in regulating the gonad development and in controlling the final sexual maturation in vertebrate. Two differing cGnRH-II cDNAs of common carp, namely cGnRH-II cDNA1 and cDNA2, were firstly cloned from the brain by rapid amplification of cDNA end (RACE) and reverse transcription- polymerase chain reaction (RT-PCR). The length of cGnRH-II cDNA1 and cDNA2 was 622 and 578 base pairs (bp), respectively. The cGnRH-II precursors encoded by two cDNAs consisted of 86 amino acids, including a signal peptide, cGnRH-II decapeptide and a GnRH-associated peptide (GAP) linked by a Gly-Lys-Arg proteolytic site. The results of intron trapping and Southern blot showed that two differing cGnRH-II genes in common carp genome were further identified, and that two genes might exist as a single copy. The multi-gene coding of common carp cGnRH-II gene offered novel evidence for gene duplication hypothesis. Using semi-quantitative RT-PCR, expression and relative expression levels of cGnRH-II genes were detected in five dissected brain regions, pituitary and gonad of common carp. With the exception of no mRNA2 in ovary, two cGnRH-II genes could be expressed in all the detected tissues. However, expression levels showed an apparent difference in different brain regions, pituitary and gonad. According to the expression characterization of cGnRH-II genes in brain areas, it was presumed that cGnRH-II might mainly work as the neurotransmitter and neuromodulator and also operate in the regulation for the GnRH releasing. Then, the expression of cGnRH-II genes in pituitary and gonad suggested that cGnRH-II might act as the autocrine or paracrine regulator.