180 resultados para nutrient consumption ratio
Resumo:
The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
In present study, the transition of thermocapillary convection from the axisymmetric stationary flow to oscillatory flow in liquid bridges of 5cst silicon oil (aspect ratio 1.0 and 1.6) is investigated in microgravity conditions by the linear instability analysis. The corresponding marginal instability boundary is closely related to the gas/liquid configuration of the liquid bridge noted as volume ratio. With the increasing volume ratio, the marginal instability boundary consists of the increasing branch and the decreasing branch. A gap region exists between the branches where the critical Marangoni number of the corresponding axisymmetric stationary flow increases drastically. Particularly, a unique axisymmetric oscillatory flow (the critical azimuthal wave number is m=0) in the gap region is reported for the liquid bridge of aspect ratio 1.6. Moreover, the energy transfer between the basic state and the disturbance fields of the thermocapillary convection is analyzed at the corresponding critical Marangoni number, which reveals different major sources of the energy transfer for the development of the disturbances in regimes of the increasing branch, the gap region and the decreasing branch, respectively.
Resumo:
A new methodology based on the use of CFD is proposed to estimate the energy consumptions in a DTS (DOUBLE-TUBE-SOCKET) pneumatic conveying. A simple computational program based on this methodology is developed. It can directly give the lowest energy consumption and the compatible gas consumption by only input the distance of conveying and the conveying tonnage. This computational program has been validated through our experimental work.
Resumo:
为了揭示不同类型植被下土壤有机碳及其活性组分季节动态变化及其特点,探讨不同的植被恢复模式对土壤有机碳组分的影响,分析影响土壤有机碳组分变化的因素,评估土壤有机活性有机碳组分参数在植被恢复过程中土壤质量监测的可靠性,为植被恢复及低效林改造技术提供理论依据。本研究选择岷江上游大沟流域的几种人工林(云杉林、油松林、华山松林、日本落叶松林)以及次生落叶阔叶灌丛下土壤,通过剖面机械分层取样,测定土壤总有机碳(TOC)和三种活性碳组分微生物碳(SMBC)、水溶性碳(WSOC)、易氧化碳(EOC)等来反映土壤变化特点。主要结果是: 1. 土壤有机碳含量平均在15.48~25.46 g kg-1之间在5月份时含量最低,随生长季的开始,有机碳含量逐渐增加,到9月份时含量达到最大值;由于新形成的凋落物不能被迅速分解利用补充土壤碳库,而原有碳库经历一个生长季的分解利用,因此,生长季末期即11月份的含量较小;土壤微生物碳含量平均在132.78~476.73mg kg-1之间,9月份和11月份含量都比较高;水溶性碳在生长季中逐步增大,含量在51.95~77.18 mg kg-1之间,到11月份时达到最大值;土壤易氧化碳平均含量在3.74~5.79g kg-1之间,含量最低值出现在5月份,但和其他碳组分不同的是其在7月份时含量较高。 2. 土壤有机碳及其活性碳组分大小关系为:TOC>EOC >SMBC>WSOC;比值约为300:70:5:1。 3. 土壤不同层次间比较,土壤碳指标都表现为随土壤深度增加而逐渐减小, 表层积聚作用明显。 4. 对土壤总有机碳量与活性碳组分以及活性碳之间进行了相关分析表明,土壤总有机碳含量与土壤微生物量碳、水溶性碳、易氧化碳之间的相关性均达到显著水平(P<0.05),有机碳总贮量很大程度上制约着土壤活性碳组分。土壤微生物量碳、水溶性碳、易氧化碳两两之间也都存在着显著相关关系(P<0.05),并随着不同植被类型或立地条件因子发生变化而变化。 5. 土壤有机碳及其活性组分与土壤养分状况之间的相关性分析发现,随着海拔、坡向或者植被类型的改变,其林下土壤有机碳及其活性组分与土壤养分的相关性也发生较大的变化。总体而言,岷江上游地区海拔、坡向、土壤自然含水量、植被盖度、凋落物厚度、土壤全N对次生林下土壤有机碳及其组分有重要影响。而AP、AK、C/N对土壤碳变化变化影响较小。 6. 通过不同海拔、坡向以及植被类型之间的综合比较分析发现,土壤微生物碳SMBC和水溶性碳WSOC比TOC和EOC更能敏感地反映出比较敏感的指示林下土壤质量的变化。 In order to reveal seasonal dynamics of soil labile organic carbon under different secondary vegetation, to analyze effect of different vegetation restoration pattern on soil organic carbon and its fractions, and to find the factors influencing changes in soil organic carbon and its fractions, further to estimate those parameters reliability for soil quality monitoring in the process of vegetation restoration. Soils were selected from several plantations, including Picea asperata Pinus tabulaeformis, Pinus armandii and Larix kaempferi and secondary shrub in Dagou Watershed of the upper reach of Minjiang River. The measurement of TOC, SMBC,WSOC and EOC were made, because these parameters can reflect change of soil characteristics. The major results are: 1. There were the lowest soil organic carbon and its labile fractions contents in May. At the time of growth initiation, they increased gradually and reached maximum in September. After that the soil organic carbon content decreased. Because current litter couldn’t be rapidly decomposed, and supplemented into carbon pool, while intrinsic carbon pool experienced decomposition and utilization of growth season, Which led a decrease in soil organic carbon content in November. Average value was 15.48~25.46 g kg-1; average SMBC content was 132.78~476.73mg kg-1.There were higher SMBC content in September and November as compared with other times; Water soluble organic carbon content increased from 51.95 mg kg-1 in May to 77.18 mg kg-1 in November; EOC content was lowest in May y. Average value was 3.74~5.79g kg-1. Differeing from other parameters of carbon fractions, EOC content was higher in July. 2. The content of soil organic carbon and its labile carbon fractions ranked as follows:TOC>EOC >SMBC>WSO,and ratio was about 300:70:5:1. 3. Consider as soil different layers,all of the parameters decreased gradually with increasing soil depth, thus displayed a significant accumulation in the surface layer soil. 4. Correlations coefficient analysis revealed that, TOC significantly correlated with SMBC, WSOC and EOC indicating total storage of organic carbon limited soil labile carbon fractions in great extent. On the other hand, there were significant correlations between SMBC,WSOC and EOC. But these relationships changed with vegetation types and/or environmental conditions. 5. The relationships between soil organic carbon and its labile fractions and soil nutrient traits changed with altitude,slope aspect and vegetations. Therefore our results suggested that altitude,slope aspect,soil natural water content,vegetation coverage, litter thickness and soil total nitrogen play a important role change in soil organic carbon and its fractions in upper reaches of Minjiang River. While AP、AK、C/N slightly influenced soil carbon. 6. Our results, on the other hand suggested that SMBC and WSOC are more sensitive to the change of altitudes, slope aspects, vegetation types than TOC and EOC, thus two parameters may be good index reflecting change of soil quality. These results provide insights into theoretical and technological evidences for the vegetation regeneration restoration and improvement of low-quality and benefit forest in the upper reaches of Minjiang River regions.
Resumo:
瑞香狼毒(Stellera chamaejasme L.)是瑞香科(Thymelaeaceae)狼毒属的一种多年生野草,有毒。据调查,从20 世纪60 年代开始至今,狼毒在青藏高原东缘的高寒草甸上不断蔓延、密度不断变大,在一些地段甚至成为优势物种。有关狼毒在高寒草甸蔓延的生态系统效应的研究尚未见报道。本文从系统碳、氮循环的角度,分别研究狼毒在生长和非生长季节对高寒草甸生态系统的影响。同时,从花粉化感的角度,深入研究狼毒对当地同花期物种有性繁殖的影响。系统地研究高寒草甸生态系统物质循环过程,特别是非生长季节微生物和土壤碳氮库的动态变化,有助于揭示狼毒在系统物质循环方面的“物种效应”以及这种效应的季节变化,为丰富有关高海拔生态系统,特别是其非生长季的物质循环的科学理论做出贡献。同时,碳氮循环和花粉化感的研究还有助于深刻地理解狼毒作为一种入侵性很强的杂草的特殊的蔓延机制,从而为狼毒的有效防治、高寒草甸的科学管理提供依据。 针对狼毒在青藏高原高寒草甸上蔓延的生态系统碳氮循环方面的影响,开展以下2 方面的研究:(1)在生长季,研究松潘县尕米寺附近(北纬32°53',东经103°40',海拔3190 m)的两种地形(平地和阳坡)条件下狼毒对土壤碳氮循环影响及可能的原因。狼毒和其它几个主要物种(圆穗蓼(Polygonummacrophyllum D. Don var. Macrophyllum),草地早熟禾(Poa pretensis L.),四川嵩草(Kobresia setchwanensis Hand.-Maizz.),鹅绒委陵菜(Potentilla anserina L.var. anserine)和鳞叶龙胆(Gentiana squarrosa Ledeb.)的地上凋落物产量以及地上凋落物和根的化学组成被测量。在有-无狼毒斑块下,各种土壤的库(比如,铵态氮、硝态氮、无机磷和微生物生物量)和周转率(包括净矿化、净硝化、总硝化、反硝化和微生物呼吸速率)被测量和比较。(2)在非生长季节,尤其是春季冻融交替期,选取了两个研究地点——尕米寺和卡卡沟(北纬32°59',东经103°41',海拔3400 m),分别测定有狼毒和无狼毒斑块下土壤微生物生物量碳和氮、可溶性有机碳和氮以及铵态氮和硝态氮的动态变化。同时,分别在上述两个地点有-无狼毒的样地上,研究6 个主要物种(狼毒、圆穗蓼、草地早熟禾、四川嵩草、鹅绒委陵菜和鳞叶龙胆)从秋季开始、为期1 年的凋落物分解过程。 针对狼毒花粉化感对同花期其它物种可能的花粉化感作用开展以下工作:在实验室中,用一系列浓度的狼毒花粉水浸提液对与它同花期的其它物种以及自身花粉进行测试,测定花粉萌发率;在野外自然条件下的其它物种的柱头上施用上述浓度的狼毒花粉水浸提液,观测种子结实率,同时,观察狼毒花粉的种间花粉散布数量。 生长季节的研究结果表明,狼毒地上凋落物氮含量比其它几个主要物种更高,而木质素-总氮比更低。狼毒显著地增加其斑块下表层土壤中有机质的含量,而有-无狼毒的亚表层土壤在有机碳和总磷方面没有显著差异。狼毒表土中硝态氮含量在平地和阳坡比无狼毒土壤分别高113%和90%。狼毒表土中微生物生物量碳和氮量显著高于无狼毒表土。无论是平地还是阳坡,狼毒土壤的总硝化和微生物呼吸速率显著高于无狼毒土壤;而它们的反硝化速率只在平地有显著的差异。狼毒与其它物种间地上凋落物的产量和质量的差异可能是导致有-无狼毒土壤碳氮循环差异的原因。我们假设,狼毒可能通过增加贫氮生态系统土壤中的有效氮含量提高其入侵能力。 非生长季的研究结果表明,在青藏高原东缘的高寒草甸上,土壤微生物生3物量在11 月的秋-冬过渡期达到第一个峰值;在春季的冻融交替期,微生物生物量达到第二个峰值后又迅速降低。无机氮以及可溶性有机碳氮与微生物生物量有相似的变化过程。微生物碳氮比呈现显著的季节性变化。隆冬季节的微生物生物量碳氮比显著高于生长旺季的微生物碳氮比。这种变化可能暗示冬、夏季微生物的群落组成和对资源的利用有所不同。有-无狼毒斑块下土壤微生物和土壤碳、氮库一般只在秋-冬过渡期有显著差异,有狼毒土壤微生物生物量和土壤碳、氮库显著高于无狼毒土壤;而在之后的冬季和春季没有显著差异。所有6 个物种凋落物在非生长季分解率为24%-50%,均高于生长季的10%到30%。其中在秋-冬过渡期,凋落物开始埋藏的两周时间内,分解最快,达10%-20%。不同物种凋落物全年的分解率和分解过程有显著差异。圆穗蓼在全年的分解都较缓慢(非生长季26%,生长季15%),草地早熟禾和四川嵩草等全年的分解速率比较均匀(非生长季和生长季均为30%,非生长季略高),而狼毒在非生长季分解较快(约50%),而在接下来的生长季分解变得缓慢(约12%)。所有物种的凋落物氮含量在非生长季下降,而在随后的生长季上升。 实验室的花粉萌发试验证明,狼毒花粉对自身花粉萌发没有自毒作用,而其它受试的所有物种(圆穗蓼,秦艽(Gentiana macrophylla Pall. var. fetissowii),湿生扁蕾(Gentianopsis paludosa (Hook. f.) Ma var. paludosa),鳞叶龙胆,椭圆叶花锚(Halenia elliptica D. Don var. elliptica),蓝钟花(Cyananthus hookeri C. B.Cl. var. grandiflorus Marq.),小米草(Euphrasia pectinata Ten.),川西翠雀花(Delphinium tongolense Franch.),高原毛茛(Ranunculus tanguticus (Maxim.)Ovcz. var. tanguticus)和鹅绒委陵菜)的花粉萌发率随着狼毒花粉浸提液浓度的增加呈显著的非线性降低。大约3 个狼毒花粉的浸提液就可以抑制受试的多数物种的50%的花粉萌发。在鳞叶龙胆和小米草柱头上狼毒花粉的数量分别为5.76 个和3.35 个。狼毒花粉散布数量的差异最可能的原因在于是否有共同的传粉昆虫。花的形状(辐射对称VS 左右对称)、植株或花的密度以及花期重叠性可以部分解释这种差异。在野外试验中,我们发现6 个物种(秦艽、湿生扁蕾、鳞叶龙胆、椭圆叶花锚、蓝钟花和小米草)的种子结实率随狼毒花粉浸提液浓度的增加呈显著的非线性降低。鳞叶龙胆和小米草柱头上狼毒花粉的数量(分别是5.76 个和3.35 个)分别达到了抑制它们63%和55%种子结实率的水平。因此,狼毒对鳞叶龙胆和小米草可能存在明显的花粉化感抑制作用。狼毒周围的物种可能通过花期在季节或昼夜上的分异避免受到狼毒花粉化感的影响或者通过无性繁殖来维持种群繁衍,因此狼毒通过花粉化感作用对其周围物种繁殖的影响程度还需要进一步地研究。如果狼毒的花粉化感抑制作用确实存在,那么它可能成为一种自然选择压力,进而影响物种的进化。 Stellera chamaejasme L., a perennial toxic weed, has emerged and quicklydominated and spread in the high-frigid meadow on the eastern Tibetan Plateau ofChina since the 1960s. In the present study, effects of S. chamaejasme on carbon andnitrogen cycles on the high-frigid meadow on the eastern Qinghai-Tibetan Plateau ingrowing and non-growing season, and its pollen allelopathic effects on the sympatricspecies were determined. The present study that focused on carbon and nitrogencycles, especially on microbial biomass and pools of carbon and nitrogen innon-growing season, could profoundly illuminate plant-species effects on carbon andnutrient cycles and its seasonal pattern and help to understand spread mechanism ofS. chamaejasme as an aggressive weed. The present study also contributed to furtherunderstand carbon and nutrient cycles on alpine regions in non-growing season andprovide a basis on weed control of S. chamaejasme and scientific management in thehigh-frigid ecosystem. Effects of S. chamaejasme on carbon and nitrogen cycles on the high-frigidmeadow on the eastern Qinghai-Tibetan Plateau were determined. The study couldbe divided into two parts. (1) In the growing season, we quantified the effects of S.chamaejasme on carbon and nitrogen cycles in two types of topographic habitats, theflat valley and the south-facing slope, where S. chamaejasme was favored to spreadlitter and root were measured to explain the likely effects of S. chamaejasme on soilcarbon and nutrient cycles. The sizes of various soil pools, e.g. nitrite, ammonium,inorganic phosphorus and microbial biomass, and turnover rates including netmineralization, gross nitrification, denitrification and microbial respiration weredetermined. (2) In the non-growing season study, microbial biomass carbon andnitrogen, soluble organic carbon and nitrogen, ammonium and nitrate weredetermined through the non-growing season, especially in the processes offreeze-thaw of spring in two high-frigid sites, i.e. Kaka valley and Gami temple, onthe eastern Qinghai-Tibetan Plateau. Meanwhile, litter decomposition of six commonspecies, including Stellera chamaejasme L., Polygonum macrophyllum D. Don var.Macrophyllum, Poa pretensis L., Kobresia setchwanensis L., Potentilla anserina L.var. anserine and Gentiana squarrosa Ledeb., were also examined under theabove-mentioned experimental design through one whole-year, which began in theautumn in 2006. In the study of pollen allelopathy, several work, including in vitro study oneffects of extract of pollen from S. chamaejasme on sympatric species and pollenfrom itself, field experiments on effects of pollen extract with the same regime ofconcentrations on seed set and field observation on heterospecific pollen transfer ofS. chamaejasme to six of those sympatric species has been done. The results in the growing season showed that aboveground litter of S.chamaejasme had higher tissue nitrogen and lower lignin: nitrogen ratio than thoseco-occurring species. S. chamaejasme significantly increased topsoil organic matter,whereas no significant differences were found for organic C and total P in subsoilbetween under-Stellera and away-Stellera locations. The nitrate in Stellera topsoilwas 113% and 90% higher on the flat valley and on the south-facing slope,respectively. Both microbial biomass C and N were significantly higher in Stelleratopsoil. Gross nitrification and microbial respiration were significantly higher inStellera topsoil both on the flat valley and on the south-facing slope, whereassignificant differences of denitrification were found only on the flat valley. Thedifferences in the quantity and quality of aboveground litter are a likely mechanismresponsible for the changes of soil variables. We assumed that S. chamaejasme couldenhance their spread by increasing nutrient availability in N-deficient ecosystems. The results in the non-growing season showed that microbial biomass achievedthe first summit in late autumn and early winter on the eastern Qinghai-TibetanPlateau. In the stages of freeze-thaw of spring, microbial biomass firstly achieved thesecond summit and subsequently sharply decreased. Inorganic nitrogen, solubleorganic carbon and nitrogen had a similar dynamics with that of microbial biomass.Ratio of microbial biomass carbon and nitrogen had an obviously seasonal pattern.The highest microbial C: N were in the non-growing season, which weresignificantly higher than those in the growing season. The seasonal pattern inmicrobial biomass C: N suggested that large changes in composition of microbialpopulation and in resources those used by microbes between summer and winter.Generally, microbial biomass and pools size of carbon and nitrogen in Stellera soilwere significantly higher than those under adjacent locations in late autumn andearly winter, but there were not significant differences in winter and in spring. Litterof all the focal species (Stellera chamaejasme L., Polygonum macrophyllum D. Donvar. Macrophyllum, Poa pretensis L., Kobresia setchwanensis Hand.-Maizz.,Potentilla anserina L. var. anserine and G. squarrosa Ledeb.) decomposed about24%-50% in the non-growing season, which were higher than those in the growingseason (ranged from 10% to 30%). Litter decomposed 10%-20% within the first twoweeks in late autumn and early winter. Significant differences in the whole-yeardecomposition rate and in the processes of decomposition were found among species.Polygonum macrophyllum decomposed slowly through the whole year (26% and15% in the non-growing season and in the growing season, respectively). Certainspecies, such as P. pretensis L. and K. setchwanensis, decomposed at a similar rate(30% both in the non-growing and in the growing season, slightly higher in the8growing season than those in the growing season), whereas S. chamaejasmedecomposed more rapidly (about 50%) in the non-growing season and subsequentlydecomposition became slow (about 12%) in the growing season. Litter nitrogencontents of all the focal species firstly decreased in the non-growing season and thenincreased in the growing season. In vitro experiments of pollen allelopathy, the results showed that pollen from S.chamaejasme was not autotoxic, whereas pollen germination in all the sympatricspecies (Polygonum macrophyllum D. Don var. Macrophyllum, Gentianamacrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Ma var. paludosa,Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica, Cyananthushookeri C. B. Cl. var. grandiflorus Marq., Euphrasia pectinata Ten., Delphiniumtongolense Franch., Ranunculus tanguticus (Maxim.) Ovcz. var. tanguticus andPotentilla anserina L. var. anserina) decreased nonlinearly as the increasingconcentrations of extract of pollen from S. chamaejasme. Pollen Extract of threepollens from S. chamaejasme generally inhibited 50% pollen germination of most ofthe focal species. 5.76 and 3.35 pollens from S. chamaejasme were observed in fieldon stigmas of G. squarrosa and E. pectinata, respectively. Differences inheterospecific pollen transfer of S. chamaejasme could be attributed to the primaryreason whether they shared common pollinators. Flower morphology (e.g.zygomorphic or actinomorphic), plant or floral density and concurrence in floweringphonologies could explain, in part, the differences in heterospecific pollen transfer.In field experiments, the results showed that seed set in six sympatric species(Gentiana macrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Mavar. paludosa, Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica,Cyananthus hookeri C. B. Cl. var. grandiflorus Marq. and Euphrasia pectinata Ten.)decreased nonlinearly as the increasing concentrations of extract of pollen from S.chamaejasme. According to the nonlinear curves, the amounts of pollens from S.chamaejasme on stigmas of G. squarrosa and of E. pectinata (i.e. 5.76 grains and3.35 grains, respectively) could reduce 63% and 55% seed set of G. squarrosa and ofE. pectinata, respectively. Thus, allelopathic effects of S. chamaejasme on G.squarrosa and E. pectinata could be realistic. The sympatric species of S.chamaejasme could avoid pollen allelopathy of S. chamaejasme to sustainthemselves. This highlights the need to study how much pollen allelopathy in S.chamaejasme influences the sympatric species through divergence in seasonal ordiurnal flowering phonologies or through asexual reproduction. If pollen allelopathyin S. chamaejasme was confirmed, it could be as a pressure of natural selection andthus play an important role in species evolution.
Resumo:
干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.