210 resultados para nonadiabatic coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular test cell when the upper surface was open to air. By altering the imposed horizontal temperature differences and heights of liquid layers, the average evaporating rate and interfacial temperature profiles were measured. The flow fields were also visualized by PIV method. For comparison, the experiments were repeated by use of another two non-evaporating liquids to study the influence of evaporation effect. The results reveal evidently the role that evaporation effect plays in the coupling with thermocapillary convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed free-space optical communication systems have recently used fiber-optical components. The coupling efficiency with which the received laser beam can be coupled into a single-mode fiber is noticeably limited by atmospheric turbulence due to the degradation of its spatial coherence. Fortunately, adaptive optics (AO) can alleviate this limitation by partially correcting the turbulence-distorted wavefront. The coupling efficiency improvement provided by Zernike modal AO correction is numerically evaluated. It is found that the first 3-20 corrected polynomials can considerably improve the fiber-coupling efficiency. The improvement brought by AO is compared with that brought by a coherent fiber array. Finally, a hybrid technique that integrates AO and a coherent fiber array is proposed. Results show that the hybrid technique outperforms each of the two above-mentioned techniques. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experimental observation of spin-orbit coupling in carbon nanotube quantum dots [F. Kuemmeth , Nature (London) 452, 448 (2008)], we investigate in detail its influence on the Kondo effect. The spin-orbit coupling intrinsically lifts out the fourfold degeneracy of a single electron in the dot, thereby breaking the SU(4) symmetry and splitting the Kondo resonance even at zero magnetic field. When the field is applied, the Kondo resonance further splits and exhibits fine multipeak structures resulting from the interplay of spin-orbit coupling and the Zeeman effect. A microscopic cotunneling process for each peak can be uniquely identified. Finally, a purely orbital Kondo effect in the two-electron regime is also predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between the input impedance and the characteristic parameters of a cavity, such as the resonance frequency, shunt impedance and. the quality factor, has been obtained based on the equivalent circuit of the cavity and the coupling system. Using the matching condition, the ratio of coupling capacitance to the equivalent capacitance of the cavity can be acquired as a function of the characteristic parameters of the cavity, the value of the coupling capacitance can be obtained with a help of a numerical simulation and the perturbation theory, and then the perfect matching between the cavity and the transmission line can be procured. The application of these results on a model cavity is presented too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle of particle coupling between horizontal and vertical directions in solenoid is presented. Further more, the method of decoupling can be obtained by using the coupling dynamic equations. 5000 particles are tracked under three conditions: CSRm doesn't contain solenoids, contains main solenoid and toroids, contains compensating solenoids. The results of the particle trace calculations show that the particles coupling between horizontal and vertical is very serious because of the existence of solenoids, and lot's of particals are lost. Another two solenoids which locate in the fit place can be used to decrease the coupling intensation. The method is proved to be useful by the trace calculations.