140 resultados para maximum electron transport rate (ETRmax)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational transition of disulfides in bovine serum albumin (BSA) induced by electrochemical redox reaction of disulfides were monitored by in-situ circular dichroism (CD) spectroelectrochemistry, with a long optical path thin layer cell and analyzed by a singular value decomposition least square (SVDLS) method. Electrochemical reduction of disulfides drives the left-handed conformation of disulfides changed into the right-handed. At open circuit, eight of the 17 disulfides were of left-handed conformation. Four of the 17 disulfides took part in the electrochemical reduction with an EC mechanism. Only one-fourth of the reduced disulfides returned to left-handed conformation in the re-oxidation process. Some parameters of the electrochemical reduction process, i.e. the number of electrons transferred and electron transfer coefficient, n=8, alphan=0.15, apparent formal potential, E-1(0') = -0.65(+/-0.01) V, standard heterogeneous electron transfer rate constant, k(1)(0) = (2.84 +/- 0.14)x 10(-5) cm s(-1) and chemical reaction equilibrium constant, K-c=(5.13 +/- 0.12) x 10(-2), were also obtained by double logarithmic analysis based on the near-UV absorption spectra with applied potentials. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The redox process of norepinephrine in pH = 7.0 phosphate buffer solution at glassy carbon electrode was studied by circular dichroism spectroelectrochemistry with a long optical path thin layer cell. The spectroelectrochemical data were analyzed with the double logarithm method. According to the double logarithsmic plot results, the mechanism of electrochemical oxidation of norepinephrine is an irreversible process with a subsequent chemical reaction (EC) to form a norepinephrinechrome. Both of norepinephrinequinone and norepinephrinechrome are followed E mechanisms. Some kinetic parameters about the electrochemical process, i.e. the electron transfer coefficient and number of electron transfered, alpha n = 0.38, the formal potential, E-1(0)' = 0.20 V, the standard heterogenous electron transfer rate constant, k(1)(0) = 1.2 x 10(-4) cm s(-1) for the oxidation of norepinephrine, alpha n = 0.37, E-2(0)' = 0.25 V and k(2)(0) = 4.4 x 10(-5) cm . s(-1) for the reduction of norepinephrinequnone and alpha n = 0.33, E-3(0)' = -0.25V and k(3)(0) = 1.1 x 10(-4) cm . s(-1) for the reduction of norpinephrinechrome, were also estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of an electroinactive product greatly influences an irreversible electrochemical reaction in three ways, including self-block, self-inhibition, and self-acceleration, and changes not only the heterogeneous electron-transfer rate constant but also the modified formal potential and electron-transfer coefficient of the electrochemical reaction. In order to study these adsorption effects, a double logarithmic method was suggested to be used in processing the potential-controlled thin layer spectroelectrochemical data. The result shows three types of double logarithmic plots for three kinds of adsorption effects. These double logarithmic plots can be a diagnostic criterion of the adsorption effects and enable us to determine some thermodynamic and kinetic parameters. The combination of nonlinear regression with double logarithmic method is a convenient way to examine the suggested mechanism and to extract more information from the limited experimental data. Some examples are given to test the theoretical results. (C) 1999 The Electrochemical Society. S0013-4651(98)05-012-5. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constant (k(s)) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (tau(L)) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k(s) varies inversely with tau(L); k(s), is proportional to D of DMFc. Both D and k(s) of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k(s) of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the self-assembled monolayer (SAM) of a thiol-functionalized viologen modified gold electrode, cytochrome c (cyt c) exhibits a quasi-reversible electrochemical reaction. The heterogeneous electron transfer rate constant of cyt c in 0.1 mol/L phosphate buffer solution(pH 6.96) is 0.164 cm.s(-1) at 500 mV/s. The adsorbed cyt c on the viologen SAM forms a closely packed monolayer, whose average electron transfer rate is 4.85 s(-1) in the scan range of 50 to 500 mV/s. These results suggest that the SAM of viologen-thiol is a relatively stable, ordered and well-behaved monolayer from an electrochemical standpoint and it promotes the electron transfer process of biomolecules on electrode surface well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel kind of electroactive self-assembled monolayer (SAM) has been successfully prepared through the following procedure: (1) formation of inclusion complexes (denoted as CD/C8VC10SH) between N-(n-octyl)-N'-(10-mercaptodecyl)-4,4'-bipyridinium dibromide (C8VC10SH) and alpha-, beta-cyclodextrin (CD) under a mild condition; (2) spontaneous formation of SAM of CD/C8VC10SH on gold electrodes at room temperature. High-resolution H-1-NMR spectrum was used to confirm the formation of CD/C8VC10SH. Cyclic voltammetry was used to characterize the redox behavior of the resulting monolayers and chronoamperometry and electrochemical impedance spectroscopy to characterize their electron transfer kinetics. It was found that the redox sites in SAM of CD/C8VC10SH are effectively diluted, with a larger electron transfer rate constant than that of SAM of C8VC10SH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stable, well-behaved self-assembled monolayer (SAM) of viologen-functionalized thiol was used to immobilize and electrically connect horseradish peroxidase (HRP) at gold electrode. Viologen groups in SAMs facilitated the electron transfer from the electrode to the protein active site so that HRP exhibited a quasi-reversible redox behavior. HRP adsorbed in the SAMs is very stable, and close to a monolayer with the surface coverage of 6.5 x 10(-11) mol/cm(2). The normal potential of HRP is -580 mV vs Ag/AgCl corresponding to ferri/ferro active center and the standard electron transfer rate constant is 3.41 s(-1) in 0.1 M phosphate buffer solution (pH 7.1). This approach shows a great promise for designing enzyme electrodes with other redox proteins and practical use in tailoring a variety of amperometric biosensor devices. Copyright (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cryo-hydrogel membrane (CHM) immobilized at a glassy carbon (GC) electrode is reported for the direct electron transfer of redox proteins. The most attractive characteristics of this CHM were its hydrophilic micro-environment for incorporated proteins to retain their activities, its high ability for protection against interference of denatured and adsorbed proteins at the electrode, its potential applications for various proteins or enzymes, as well as its high mechanical strength and thermal stability. A clear well developed and stable redox wave was obtained for commercially available horse heart myoglobin without further purification, giving a peak to peak separation Delta E(p) = 93 mV at 5 mV s(-1) and the formal electrode potential E(0)' = -0.158 V (vs. Ag/AgCl). The formal heterogeneous electron transfer rate constant was calculated as k(0)' = 5.7 X 10(-4) cm s(-1) at pH 6.5, showing rapid electron transfer was achieved. The pH controlled conformational equilibria, acid state --> natural state --> basic I state --> basic II state, of myoglobin at the CHM GC electrode in the pH range 0-13.8 were also observed and are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rare earth complex oxides with different types have been synthesized. Their structures and electric properties have been investigated. According to our experimental results, the effects of the outest shell electronic configuration, electron spin state, electron transport path and formation of cluster on the electric properties of rare earth complex oxides have been summarized. When the electrons in the outest shell of the central metallic ion are unpair, and the outest shell is not half-filled, the electric conductibilities of these compounds are better, If there is a -M-X-M-X- or -M-M-M- (the distances between two atoms <0.31 nm) continuous electron transport path, and the electron configurations of the central metallic ion conform to the above condition, then the electric conductibilities are good, The isolate cluster can not become the continuous electron transport path, therefore, the formation of the isolate cluster will reduce the conductibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemically polymerized azure A film electrode is reported. The resulting film on a platinum electrode surface was analyzed with electron spectroscopy for chemical analysis (ESCA). The heterogeneous electron transfer processes of hemoglobin at the polymerized azure A film electrode have been investigated using in situ UV-visible spectroelectrochemistry. The formal potential (E-degrees') and electron transfer number (n) of hemoglobin were calculated as E = 0.088 V versus NHE (standard deviation +/- 0.5, N = 4) and n = 1.8 (standard deviation +/- 0.5, N = 4). Exhaustive reduction and oxidation electrolysis are achieved in 80 and 380 seconds, respectively, during a potential step between -0.3 and +0.3 V. A formal heterogeneous electron-transfer rate constant (k(sh)) of 3.54(+/- 0.12) X 10(-6) cm/s and a transfer coefficient (alpha) of 0.28(+/- 0.01) were obtained by cyclic voltabsorptometry, which indicated that the poly-azure A film electrode is able to catalyze the direct reduction and oxidation of hemoglobin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemically polymerized azure A film electrode was firstly reported in this paper. A quasi-reversible electrode processes of myoglobin with the formal heterogeneous electron transfer rate constant (k(sh)) of 1.73 x 10(-4) cm.s-1 at the polymerized azure A modified electrode have been achieved using in-situ UV-visible spectroelectrochemistry. The adsorption of myoglobin on the polymerized azure A film electrode surface was confirmed by XPS. With simultaneously studying of cyclic voltammetry and in-situ cyclic voltabsorptometry, the attribution of the voltammetry responses of myoglobin at the film electrode has been studied. The mechanism for the heterogeneous electron transfer of myoglobin at the polymerized azure A film modified electrode has been proposed as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE; ULVA-ROTUNDATA; ELECTRON-TRANSPORT; FIELD EXPERIMENTS; O-2 EVOLUTION; QUANTUM YIELD; TEMPERATURE; MACROALGAE; RESPONSES

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new theoretical framework of tracer methods is proposed in the present contribution, on the basis of mass conservation. This model is applicable for both artificial and natural tracers. It can be used to calculate the spatial distribution patterns of sediment transport rate, thus providing independent information and verification for the results derived from empirical formulae. For the procedures of the calculation, first, the tracer concentration and topographic maps of two times are obtained. Then, the spatial and temporal changes in the concentration and seabed elevation are calculated, and the boundary conditions required are determined by field observations (such as flow and bedform migration measurements). Finally, based upon eqs. (1) and (13), the transport rate is calculated and expressed as a function of the position over the study area. Further, appropriate modifications to the model may allow the tracer to have different densities and grain size distributions from the bulk sediment.