133 resultados para longitudinal imaging
Resumo:
Structures and crystal form transition of the novel aryl ether ketone polymer containing meta-phenylene linkage: PEKEKK(T/I) were investigated by wide angle X-ray diffraction (WAXD), imaging plates (IPs) and small angle X-ray scattering (SAXS). The energy of activation of the decomposition reaction and degree of crystallinity of PEKEKK(T/I) were determined by WAXD and thermo-gravimetric analysis (TGA), respectively. Results obtained from WAXD and IPs show that crystal forms I and II coexist in the PEKEKK(T/I) samples isothermally cold crystallized in the temperature range from 180degreesC to 240degreesC and only form I occurs in PEKEKK(T/I) samples isothermally cold crystallized at 270degreesC. The radius of gyration (Rg), thickness of microregions with electron-density fluctuations (E) and distribution of particle sizes were investigated by SAXS.
Resumo:
The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.
Resumo:
Arabinogalactan-Gd-DTPA was synthesized by the reaction of diethylenetriaminepenta-acetic acid (DTPA) bisanhydride with polysaccharide in dry DMSO and characterized by FTIR, elemental analysis and ICP-AES. Its stability was investigated by competition with Ca2+, EDTA, DTPA. The t(1)-relaxivity is 8.06 mmol(-1) . L . s(-1) in D2O, 8.48 mmol(-1) . L . s(-1) in 0.725 mmol . L-1 BSA, respectively. t(1)-weighted MR imaging of rat kidney and liver showed a remarkable enhancement post injection of Arabinogalactan-Gd-DTPA. The results indicate that the arabinogalactan-Gd-DTPA is a potential contrast agent for MRI.
Resumo:
Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Flavin adenine dinucleotide (FAD) was modified onto the highly oriented pyrolytic graphite (hopg) and glassy carbon electrode (gee) surfaces with three methods, respectively. Corresponding image analysis for FAD-modified hopg surfaces has been performed by scanning tunnelling microscope (STM) for the first time. The molecular resolution STM image of FAD adsorbed on the freshly-cleaved hopg was obtained, the quantitative size determination suggests that the FAD molecules adsorb side lying on the substrate surface. The anodization treatment of hopg surface yields many pits, which were clearly observed under STM. These pits provide active sites on the hopg surface for modification and the treated hopg can strongly adsorb FAD molecules, the latter exhibiting an irregular cluster structure on such a surface. When FAD was electrochemically deposited on the substrate surface, a chain structure was successfully observed. The adsorbed FAD on anodized glassy carbon electrode (gee) surface can effectively catalyze the reduction of glucose oxidase, hemoglobin and myoglobin, with a large decrease in the overvoltage, whereas the deposited FAD film exhibits excellent electrocatalysis towards dioxygen reduction.
Resumo:
High resolution transmission electron microscope (HREM) was used to observe the rigid chain polymer poly(aryl-ether-ketone) (PEK), so as to study the morphology of the crystals and molecular arrangement within a crystal.Many kinds of material crystal structures have been studied with HREM in recent years. So far as polymeric materials are concerned, the application of HREM
Resumo:
Near-space, defined as the altitude region between 20 and 100 km, offers many capabilities that are not accessible for low Earth-orbit (LEO) satellites or airplanes because it is above storm and not constrained by orbital mechanics and high fuel consumption. Hence, a high flying speed can be obtained for the maneuvering vehicles operating in near-space. This offers a promising solution to simultaneous high-resolution and wide-swath synthetic aperture radar (SAR) imaging. As such, one near-space wide-swath SAR imaging technique is presented in this letter. The system configuration, signal model, and imaging scheme are described. An example near-space SAR system is designed, and its imaging performance is analyzed. Simulation results show that near-space maneuvering vehicle SAR indeed seems to be a promising solution to wide-swath SAR imaging.
Resumo:
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.
Resumo:
In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.
Resumo:
Under investigation by emission electron microscopy, the shape and size of three-dimensional objects are distorted because of the appearance of a characteristic potential relief and a possible contact potential difference between the particles and the substrate. An estimation of these effects for spherical particles is made. It is shown that the apparent size of particles observed in an emission electron microscope (EEM) could be increased as well as decreased depending on the relation between the work functions of the particle and the substrate. The corresponding formulae are given and several possibilities are shown which permit us to determine from the EEM image the real size of particles and their work function relative to the substrate.
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.