264 resultados para garnet deposit
Resumo:
By using metal nitrates and oxides as the starting materials, Y3Al5O12 (YAG) and YAG: RE3+ (RE: Eu, Dy) powder phosphors were prepared by solid state (SS), coprecipitation (CP) and citrate-gel (CG) methods, respectively. The resulting YAG based phosphors were characterized by XRD and photoluminescent excitation and emission spectra as well as lifetimes. The purified crystalline phases of YAG were obtained at 800degreesC (CG) and 900degreesC (CP and SS), respectively. Great differences were observed for the excitation and emission spectra of Eu3+ and Dy3+ between crystalline and amorphous states of YAG, and their emission intensities increased with increasing the annealing temperature. At an identical annealing temperature and doping concentration, the Eu3+ and Dy3+ showed the strongest and weakest emission intensity in CP- and CG-derived YAG phosphors, respectively. The poor emission intensity for CG-derived phosphors is mainly caused by the contamination organic impurities from citric acid in the starting materials. Furthermore, the lifetimes for the samples derived from CG and CP routes are shorter than those derived from the SS route.
Resumo:
Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H2PtCL6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH4OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode.
Resumo:
A novel sensitive electrochemical immunoassay with colloidal gold as the antibody labeling tag and subsequent signal amplification by silver enhancement is described. Colloidal gold was treated by a light-sensitive silver enhancement system which made silver deposit on the surface of colloidal gold(form Au/Ag core-shell structure), followed by the release of the metallic silver atoms anchored on the antibody by oxidative dissolution of them in an acidic solution and the indirect determination of the dissolved Ag+ ions by anodic stripping voltammetry(ASV) at a carbon fiber microelectrode. The electrochemical signal is directly proportional to the amount of analyte(goat IgG) in the standard or a sample. The method was evaluated by means of a noncompetitive heterogeneous immunoassay of immunoglobulin G(IgG) with a concentration as low as 0.2 ng/ mL. The high performance of the method is related to the sensitive ASV determination of silver(I) at a carbon fiber microelectrode and to the release of a large number of Ag+ ions from each silver shell anchored on the analyte(goat IgG).
Resumo:
By using metal nitrates and oxides as the starting materials, Y2Al5O12 (YAG) and YAG:Re3+ (Re = Ce, Sm, Th) powder phosphors were prepared by solid-state (SS), coprecipitation (CP) and citrate gel (CG) methods. The resulting YAG and YAG-based phosphors were characterized by XRD, FT-IR, SEM and photoluminescent excitation and emission spectra. The purified crystalline phases of YAG were obtained at 800 degreesC (CG) and 900 degreesC (CP, SS). At an identical annealing temperature and doping concentration, the doped rare-earth ions showed the stronger emission intensity in the CP- and SS-derived phosphors than the CG-derived YAG phosphors. The poor emission intensity for the CG-derived phosphors is mainly caused by the contamination of carbon impurities from citric acid in the starting materials.
Resumo:
By using metal nitrates as starting materials and citric acid as complexing agent, Y3Al5O12 (YAG) and Y3Al5O12:Eu (1 mol%) (YAG:Eu) powder phosphors were prepared by a citrate-gel method. The formation process of YAG and YAG:Eu were investigated by means of XRD, TG-DTA and FT-IR spectra. The purified crystalline phases of YAG and YAG:Eu were obtained at 800 degreesC. The crystalline YAG:Eu phosphors showed an orange-red emission with D-5(0)-F-7(1) (591 nm) as the most prominent group, whose intensity was dependent on the pH value of the starting solution, citric acid content and firing temperature. It has been found that the suitable pH and citric acid/metal ratio are 3 and 2 for obtaining the highest emission intensity, respectively. The emission intensity increases steadily with increasing the annealing temperature from 800 to 1200 degreesC, and nearly remains constant after 1200 degreesC. Furthermore, great differences were observed for the lifetimes and the charge transfer band of Eu3+ in crystalline and amorphous states of YAG.
Resumo:
New methylene blue-intercalated a-zirconium phosphate (NMBZrP) was synthesized in the presence of n-butylamine and characterized by powder XRD, FTIR, TEM and elemental analysis. Sub-micron particles of NMBZrP in deionized water were apt to deposit onto the surface of graphite powder to yield graphite powder-supported NMBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing new methylene blue. Cyclic voltammetric studies revealed that peak currents of the NMBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled. at high scan rates. In addition, NMBZrP immobilized in a carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution in the pH range from 0.52 to 3.95.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory is applied to a rare-earth ion-doped laser crystal. TPA cross sections for transitions from the ground state to the first 4f5d state in Pr3+:YAG are calculated. The results indicate the density matrix TPA theory is attractive in studying TPA in laser crystals. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Epitaxial crystallization of syndiotactic polypropylene (sPP) on 2-quinoxalinol (2-Quin) yields, in the lower part of the crystallization range, the less common and metastable form II based on the packing of isochiral helices, rather than the stable antichiral form I. The contact plane is (110)(II). Form II exits only as a thin layer (< 50 nm) near the substrate surface. During further growth away from the surface, a transition takes place to the disordered form I, observed in "conventional" thin film growth. The epitaxial relationship rests only partly on dimensional matching with the chain axis repeat distance (which would be valid for both forms I and II) and on interchain distances. Whereas a better dimensional match would be achieved with form I, selection of the isochiral form II results from better correspondence of the surface topographies of the deposit (110)(II) sPP and substrate 2-Quin (001) contact faces.
Resumo:
The density matrix resonant two-photon absorption (TPA) theory applicable to laser crystals doped with rare earth ions is described. Using this theory, resonant TPA cross sections for transitions from the ground state to the second excited state of the 4f5d configuration in cm(4)s Pr3+:Y3Al5O12 are calculated. The peak value of TPA cross section calculated is 2.75 x 10(-50) cm(4)s which is very close to the previous experimental value 4 x 10(-50) cm(4) s. The good agreement of calculated data with measured values demonstrates that the density matrix resonant TPA theory can predict resonant TPA intensity much better than the standard second-order perturbation TPA theory.
Resumo:
In view of the growing interest in endohedral lanthanide fullerenes, Ce, as a typical +4 oxidation state lanthanide element, has been systematically studied. The synthesis, extraction and electronic structure of Ce@C-2n are investigated. Soot containing Ce@C-2n was synthesized in high yield by carbonizing CeO2-containing graphite rods and are back-burning the CeC2-enriched cathode deposit in a DC are plasma apparatus. Ce@C-2n, dominated by Ce@C-82, can be efficiently extracted from the insoluble part of the soot after toluene Soxhlet extraction by pyridine at high temperature and high pressure in a closed vessel. About 60% Ce@C-2n (2n = 82,80,78,76) and 35% Ce@C-82 can be enriched in the pyridine extract. This fact is identified by desorption electron impact mass spectrometry (DEI MS). The electronic structure of Ce@C-2n is analyzed by using X-ray photoemission spectroscopy (XPS) of pyridine-free film. It is suggested that the encapsulated Ce atom is in a charge state close to +3 and was effectively protected from reaction with water and oxygen by the enclosing fullerene cage. Unlike theoretical expectation, the electronic state of Ce@C-82 is formally described as Ce+3@C-82(3-). (C) 1997 Elsevier Science Ltd.
Resumo:
Monensin was incorporated into phospholipid/alkanethiol bilayers on the gold electrode surface by a new, paint-freeze method to deposit a lipid monolayer on the self-assembled monolayers (SAMs) of alkanethiol. The advantages of this assembly system with a suitable function for investigating the ion selective transfer across the mimetic biomembrane are based on the characteristics of SAMs of alkanethiols and monensin. On the one hand, the SAMs of alkanethiols bring out their efficiency of packing and coverage of the metal substrate and relatively long-term stability; on the other hand, monensin improves the ion selectivity noticeably. The selectivity coefficients K-Na+,K-K+, K-Na+,K-Rb+ and K-Na+,K-Ag+ are 6 x 10(-2), 7.2 x 10(-3) and 30 respectively. However, the selectivity coefficient K-Na+,K-Li+ could not be obtained by a potentiometric method due to the specific interaction between Li+ and phospholipid and the lower degree of complexion between Li+ and monensin. The potential response of this bilayer system to monovalent ions is fairly good. For example, the slope of the response to Na+ is close to 60 mV per decade and its linearity range is from 10(-1) to 10(-5) M with a detection limit of 2 x 10(-6) M, The bilayer is stable for at least two months without changing its properties. This monensin incorporated lipid/alkanethiol bilayer is a good mimetic biomembrane system, which provides great promise for investigating the ion transfer mechanism across the biomembrane and developing a practical biosensor.
Resumo:
A higher yield synthesis for lanthanofullerenes has been studied by activating the La2O3 containing graphite rod in situ and back-burning the graphite-rich cathode deposit. La@C-2n are efficiently extracted by high temperature toluene (180 degrees C) in a closed vessel, in which a new species La@C-74 is added to the members of the soluble lanthanofullerenes. The toluene extraction is first characterized by desorption electron impact mass spectrometry. The influence of anode components on synthesis is also analyzed by the XRD technique. Furthermore, the EPR spectra change with temperature are also studied. The assignment of octet II peaks in EPR is also discussed.
Resumo:
The absorption spectra of Er:YAG (YAG, yttrium-aluminium-garnet) crystals containing different concentrations of the trivalent erbium ion were measured and the spectral intensity parameters were calculated from these experimental spectra using the Judd-Ofelt model. The results indicate that the phenomenological intensity parameters, OMEGA(lambda) (lambda = 2, 4 and 6), vary as a function of the concentration of the Er3+ ion in the Er:YAG crystal, but no variation in the fluorescence-branching ratios as a function of the concentration of the Er3+ ion is found. An empirical formula is proposed to describe the relationship between the spectral intensity parameters and the Er3+ ion concentration in the Er:YAG crystal. The spectral intensity parameters exhibit a maximum in Er:YAG crystals containing about 1-1.5 at.% Er3+ ion. The effect of the Er3+ ion concentration on the spectral intensity parameters may be attributed to the inhomogeneous lattice distortion in the cell of the Er:YAG crystal caused by the dopant erbium ions.
Resumo:
OKINAWA TROUGH; BASIN
Resumo:
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus, the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BP, caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.