170 resultados para fiber matrix
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have investigated the basic properties of subwavelength-diameter hollow optical fiber with exact solutions of Maxwell's equations. The characteristics of modal field and waveguide dispersion have been studied. It shows that the subwavelength-diameter hollow optical fibers have interesting properties, such as enhanced evanescent field, local enhanced intensity in the hollow core and large waveguide dispersion that are very promising for many miniaturized high performance and novel photonic devices. (C) 2007 Optical Society of America.
Resumo:
Stable single-frequency and single-polarization distributed-feedback (DFB) fiber laser was realized by giving a pressure on the phase shift region of the fiber grating. The output wavelength of the DFB fiber laser is 1053 nm. When the pump power of 980 nm laser diode is 100 and 254 mW, the output power can reach 8.3 and 37.1 mW and the polarization extinction ratio was 26 and 20 dB, respectively. After chopped by Acousto-optic modulator (0.3 Hz), the pulse peak value variance is 4.65%(peak to peak) and 1.098% (RMS) for 31 min. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fields in subwavelength-diameter terahertz hollow optical fiber (STHOF) can be intensified by large discontinuity of the electric field at high index contrast interfaces. The influences of fiber geometry and refractive index of the dielectric region on the fiber characteristics, such as power distribution, enhancement factor, have been discussed in detail. By appropriate design, the intensity in the central region of STHOF may be enhanced by a factor of greater than 1.5 compared with subwavelength-diameter terahertz fiber without the central hole and the loss can be reduced. For its compact structure and simple fabrication process, the fiber may be very useful in many miniaturized high performance and novel terahertz photonic devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Incorporating the shielded method and post-processing method, a 75 mW single frequency Yb-doped DFB fiber laser was obtained with a 250 mW laser diode pump source at 978 nm. The threshold of the laser is 2 mW. The laser is single-polarization operation and the output power fluctuation is less than 0.2 mW in one hour when the pump power is 250 mW.
Resumo:
A master-oscillator fiber power amplifier (MOPA) system with a 4-m-long Yb3+-doped homemade large mode area (LMA) double-clad fiber is reported. The system emits up to 133.8 W of amplified radiation at a wavelength of 1064 nm and a repetition rate of 100 kHz, limited only by the available pump power. Peak power of 300 kW at 20 kHz with a pulse duration of 15 ns is obtained. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Phase locking of two fiber lasers is demonstrated experimentally by the use of a self-imaging resonator with a spatial filter. The high-contrast interference strips of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 12W and the efficiency of coherent power combination is 88% with pump power of 60W. The whole system operates quite stably and, for the spatial filter, no thermal effects have been observed, which means that we can increase the coherent output power further by this method. (c) 2006 Optical Society of America