191 resultados para fiber grating
Resumo:
The Talbot effect of a grating with different kinds of flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging will also be distorted. Furthermore, we evaluate high-density gratings by detecting the near-field distribution with the scanning near-field optical microscopy technique. Experimental results are also given. (c) 2005 Optical Society of America.
Resumo:
In this paper, we have investigated the grating erasure of a reduced LiNbO3:Fe crystal with different erasing wavelengths. The overall hologram evolution in the process of grating erasure is nonexponential due to strong absorption which is contrary to the mono-exponential law. The hologram in the rear part of the crystal can persist for a long time in the grating erasure due to weak erasing light intensity by strong absorption, which can enlarge the erasure time constant. From the erasure experiments, the global absorption ad 5 can be taken as the optimum absorption to acquire a good trade-off between the sensitivity and hologram strength in the crystal. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We have studied the anisotropic diffraction properties of the stratified volume holographic gratings recorded in photorefractive media using the anisotropic coupled wave theory. It is shown that the diffraction efficiency of such system exhibit the uniform periodic Bragg selectivity properties. In addition the dependence of the stratified volume holographic optical elements (SVHOEs) diffraction properties on the buffer-layer thickness, grating-layer thickness, number of modulation layers, and total thickness of system are discussed in detail. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
The pulse compression induced by cross-phase modulation in birefringent dispersion decreasing fiber is discussed theoretically by solving the coupled Schrodinger equations which include the contribution of the high-order non-linear effects, and third-order dispersion. In particular, it is found that a high quality compressed signal pulse can be obtained by a pump pulse of low intense through the technique. The dependence of optimum compression on the non-linear factor N, time delay tau(d) and the dispersive ratio f is also discussed in detail. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Because of high efficiencies, compact structure, and excellent heat dissipation, high-power fiber lasers are extremely useful for applications such as cutting, welding, precision drilling, trimming, sensing, optical transmitter, material processing, micromachining, and so on. However, the wavefront of the double clad fiber laser doped with ytterbium is still unknown. In this paper, wavefront of a fiber laser is measured and the traditional Hartmann-shack wavefront sensing method is adopted. We measured a double clad fiber laser doped with ytterbium which produces pulse wave output at infrared wavelength. The wavefront shape and contour are reconstructed and the result shows that wavefront is slightly focused and not an ideal plane wavefront. Wavefront measurement of fiber laser will be useful to improving the lasers' performance and developing the coherent technique for its applications.
Resumo:
Talbot effect of a grating with different flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging would also be distorted. Furthermore, we can evaluate high density gratings by detecting the near-field distribution.
Resumo:
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.
Resumo:
Using modified two- dimensional coupled- wave theory, the diffraction properties of ultrashort pulsed beams with arbitrary temporal profiles are studied with a volume holographic grating. Analytical expressions for the profiles of the transmitted and diffracted beams are obtained. It is shown that the Bragg selectivity bandwidth of the volume grating can be influenced by the geometry parameter. Numerical results are illustrated for three different temporal profiles. For different temporal profiles, the ratios of the diffraction bandwidths to input bandwidths are discussed.
Resumo:
We described a highly efficient polarizing beam splitter (PBS) of a deep-etched binary-phase fused-silica grating, where TE- and TM-polarized waves are mainly diffracted in the -1st and 0th orders, respectively. Tb achieve a high extinction ratio and diffraction efficiency, the grating depth and period are optimized by using rigorous coupled-wave analysis, which can be well explained based on the modal method with effective indices of the modes for TE/TM polarization. Holographic recording technology and inductively coupled plasma etching are employed to fabricate the fused-silica PBS grating. Experimental results of diffraction efficiencies approaching 80% for a TE-polarized wave in the -1st order and more than 85% for a TM-polarized wave in the 0th order were obtained at a wavelength of 1550 nm. Because of its compact structure and simple fabrication process, which is suitable for mass reproduction, a deep-etched fused-silica grating as a PBS should be a useful device for practical applications. (C) 2007 Optical Society of America
Anisotropic Bragg diffraction of finite-sized volume holographic grating in photorefractive crystals
Resumo:
Anisotropic diffraction of uniform plane wave by finite-sized volume holographic grating in photorefractive crystals is considered. It is found that the anisotropic diffraction can take place when some special conditions are satisfied. The diffracted image is obtained in experiment for the anisotropic Bragg diffraction in Fe:LiNbO3 crystals. A coupled wave analysis is presented to study the properties of anisotropic diffraction. An analytical integral solution for the amplitudes of the diffracted beams is submitted. A trade off between high diffraction efficiency and the deterioration of reconstruction fidelity is analyzed. Numerical evaluations also show that the finite-sized anisotropic volume grating exhibits strong angular and wavelength selectivity. All the results are useful for the optimizing design of VHOE based on finite-sized volume grating structures. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
提出了一种基于达曼光栅的动态光耦合器,通过控制装置中达曼光栅位移参量,可实现入射光束的分束或合束以及两者之间的动态转换。适当选择达曼光栅类型可实现任意N×M的动态光耦合。实验中以1550 nm光波长为例,对1×8达曼动态光耦合器进行测量,测得其实现光开关功能时插入损耗为0.43 dB,实现光分束功能时均匀性达到0.03,单路插入损耗均值为10.5 dB。该实验装置易于调节、体积小、能耗低,且关键元件达曼光栅制作工艺成熟,易于批量化生产。特别是在实现中大规模光交换阵列时,该方案就具有更明显的优越性,有实用意
Resumo:
A specklegram in a multimode fiber (MMF) has successfully been used as a sensor for detecting external disturbance. Our experiments showed that the sensitivity in the sensor with a multiple longitudinal-mode laser as its source was much higher than that with a single longitudinal-mode laser. In addition, the near-field pattern observations indicated that the coupling between different transverse modes in the MMF is quite weak. Based on the experimental results, a theoretical model for the speckle formation is proposed, taking a bend-caused phase factor into consideration. It is shown in the theoretical analysis that the interferences between different longitudinal modes make a larger contribution to the specklegram signals. (C) 2007 Optical Society of America.
Resumo:
Optical frequency domain phase conjugation (FDPC) is based on phase conjugation of spectrum of an input signal. It is equivalent to the phase conjugation and the time reversal of the temporal envelope of an input signal. The use of FDPC to control polarization signal distortion in birefringent optical fiber systems is proposed. Evolution of polarization signals in the system using midway FDPC is analyzed theoretically and simulated numerically. It is shown that the distortion of polarization signals can be controlled effectively by FDPC. The impairments due to dispersion and nonlinear effects can be suppressed simultaneously.