125 resultados para expression of power
Resumo:
Heat shock protein 70 (HSP70) is an important member of the heat shock protein superfamily, and it plays a key role in the process of protecting cells, facilitating the folding of nascent peptides and responding to stress. The cDNA of bay scallop Argopecten irradians HSP70 (designated AIHSP70) was cloned by the techniques of homological cloning and rapid amplification of cDNA end (RACE). The full length of AIHSP70 cDNA was 2651 bp in length, having a 5' untranslated region (UTR) of 96 bp, a 3' UTR of 575 bp, and an open reading frame (ORF) of 1980 bp encoding a polypeptide of 659 amino acids with an estimated molecular mass of 71.80 kDa and an estimated isoelectric point of 5.26. BLAST analysis revealed that the AIHSP70 gene shared high identity with other known HSP70 genes. Three classical HSP signature motifs were detected in AIHSP70 by InterPro, analysis. 3-D structural prediction of AIHSP70 showed that its N terminal ATPase activity domain and,C terminal substrate-binding domain shared high similarity with that in human heat shock protein 70. The results indicated that the AIHSP70 was a member of the heat shock protein 70 family. A semi-quantitive RT-PCR method was used to analyse the expression of AIHSP70 gene after the treatment of naphthalin which is one kind of polycyclic aromatic hydrocarbon (PAH) and the challenge of bacteria. mRNA expression of AIHSP70 in scallop was up-regulated significantly after the stimulation of naphthalin and increased with increasing naphthalin concentration. A clearly time-dependent expression pattern of AIHSP70 was observed after the scallops were infected by Vibrio anguillarum, and the mRNA expression reached a maximum level at 8 h and lasted to 16 h, and then dropped progressively. The results indicated that AIHSP70 could play an important role in mediating the environmental stress and immune response in scallop. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A Chlamydomonas reinhardtii (C. reinhardtii) chloroplast expression vector, papc-B, containing the apc-B gene that encodes the beta subunit of the light-harvesting antenna protein allophycocyanin (APC) of cyanobacteria, was constructed and transferred to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by Southern blot, Western blot and ELISA assays after selection on resistant medium. The recombinant APC beta subunit was expressed in the C. reinhardtii chloroplast and accounted for up to 2-3% (w/w) of the total soluble protein (TSP), suggesting a promising prospect of using C. reinhardtii chloroplasts to produce functional plant-derived proteins.
Resumo:
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A carotenoid gene (crtR-B) from the green alga Haematococcus pluvialis, encoding beta-carotene hydroxylase that was able to catalyze the conversion of beta-carotene to zeaxanthin and canthaxanthin to astaxanthin, was cloned into Chlamydomonas reinhardtii chloroplast expression vector p64D to yield plasmid p64DcrtR-B. The vector p64DcrtR-B was transferred to the chloroplast genome of C. reinhardtii using micro-particle bombardment. PCR and Southern blot analyses indicated that crtR-B was integrated into the chloroplast genome of the transformants. RTPCR assays showed that the H. pluvialis crt R-B gene was expressed in C. reinhardtii transformants. The transformants rapidly synthesized carotenoids in larger quantities than the wild-type upon being transferred from moderate to high-intensity white light. This research provides a foundation for further study to elucidate the possible mechanism of photo-protection by xanthophylls and other carotenoids in high light conditions or through exposure to UV radiation.
Resumo:
HSP22 is a member of a small HSP subfamily contributing to the growth, transformation and apoptosis of the cell as well as acting as a molecular chaperone. In the present study, CfHSP22 cDNA was cloned from Chlamys farreri by the rapid amplification of cDNA ends technique. The full-length cDNA of CfHSP22 was of 1279 bp, consisting of a 5'-terminal untranslated region (5'UTR) of 122 bp, a 3'UTR of 581 bp with a canonical polyadenylation signal sequence AATAAA and a poly( A) tail, and an open reading frame of 576 bp encoding a polypeptide with a molecular mass of 22.21 kDa and a predicted isoelectric point of 9.69. There was an alpha-crystallin domain, a hallmark of the sHSP subfamily, in the C-terminus, and the deduced amino acid sequence of CfHSP22 showed high similarity to previously identified HSP22s. CfHSP22 was constitutively expressed in the haemocyte, muscle, kidney, gonad, gill, heart and hepatopancreas, and the expression level in the hepatopancreas was higher than that in the other tissues. CfHSP22 transcription was up-regulated and reached a maximal level at 12 h after the bacterial challenge, and then declined progressively to the original level at 48 h. These results suggested that CfHSP22 perhaps play a critical role in response to the bacterial challenge in haemocytes of scallop C. farreri.