127 resultados para dynamic strain induced


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected; the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Set. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if tire density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is developed based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are applied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling includes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are designed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents(M-2, S-2, K-1, and O-1), rather than dealing with the single M-2 constituent, improves the modeling precision of the barotropic tide-induced upwelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoinhibition is a central problem for the understanding of plasticity in photosynthesis vs. irradiance response. It effectively reduces the photosynthetic rate. In this contribution, we present a mechanistic model of algal photoinhibition induced by photodamage to photosystem-II. Photosystem-IIs (PSIIs) are assumed to exist in three states: open, closed and inhibited. Photosynthesis is closely associated with the transitions between the three states. The present model is defined by four parameters: effective cross section of PSII, number of PSIIs, turnover time of electron transfer chains and the ratio of rate constant of damage to that of repair of D1 proteins in PSIIs. It gives a photosynthetic response curve of phytoplankton to irradiance (PI-curve). Without photoinhibition, the PI-curve is in hyperbola with the first three parameters. The PI-curve with photoinhibition can be simplified to the same form as the hyperbola by replacing either the number of PSIIs with the number of functional PSIIs or the turnover time of electron transfer chains with the average turnover time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past three decades have seen numerous attempts to numerically model stress and strain patterns in the lithosphere of the Earth on both global and regional scales. This efforts have been indispensable in identifying the features we need to include in our endeavour to develop better models of our planet’s lithosphere and they have also raised our awareness for the many unresolved issue in the deep geodynamical issues that need to be addressed in the future. Nonetheless, in most models, the lithosphere is treated as a single layer with depth-averaged properties, and as the same distribution in the stress and strain fields, and as deforming under plane strain. All these above make a great hander for its reality and degree of recognition. As the beginning in this paper, some principal numerical models and results on the evolution of Tibetan plateau are reviewed and analyzed. Then, the geological and geophysical expedition on the Western Himalayan Syntaxis is briefly reviewed. Furthermore, we analysis the feature in deep geophysical field studies in this area and adjacent regions. Because, for most continents, stress models driven by plate boundary forces have successfully reproduced the main characteristics of the stress and strain field, we present a set of three-dimensional models of lithosphere system for a simplified geometry of the Western Himalayan Syntaxis area and its adjacent regions, where we try to match the first-order characteristics of the stress and strain fields of lithosphere since 10 Ma, and deformation and geodynamical evolution process in former 2Ma. Of course, the kinematic boundary conditions of the stress models driven by plate boundary forces were applied. The rheology plays a significant role in the lithospheric tectonics, which lead to different rheological parameters were used in different works although the have the same constitutive equations in models. So, in this paper we do not aim to produce all characteristics of the Western Himalayan Syntaxis areas’ stress and strain fields by the choices of various parameters, but rather the dynamic response between various rheological parameters and stress and strain fields. We have chosen to concentrate on the importance of rheology and lateral strength variations for lithospheric stress and strain patterns and use our findings to build a model of the Western Himalayan Syntaxis areas. In doing so, we want to go beyond purely elastic models or purely viscoelastic models. Compared the results of the crust viscosity in the Western Himalayan Syntaxis areas, we believed that, when various viscoelastic models are adopted, the selection of the coefficient of viscosity in the Western Syntaxis area has important influence on the its uplifts and evolutions. A wider uplift ranges and gently elevation was observed at the same time when a lower viscosity was used in our models, and vice versa. Data of stress magnitudes are not available, but it is clear that the stress levels must be at or below the failure threshold of rock under compression. Under these criteria, the calculation results show that the viscosity in the Western Syntaxis area should be smaller than 1023Pa.s When elastic model is adopted in relatively rigid Tarim basin, obvious changes are induced to the stress and strain fields of the whole Western Syntaxis area. We found that rigid block of lithosphere reduced stress levels within its interior and that, at the edges of such regions, stress orientation can change. Furthermore there is no evidence that such rigid regions act as stress barriers in that they shield areas in opposite sides of the structure from the influence of one another. In our models, the upper crustal material of the Western Syntaxis area does not turns to move westward. Whereas, because of the stress and strain fields have been decoupling at the interior of the lithosphere, we can get the results that the deep material must not move westward.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

China locates between the circum-Pacific and the Mediterranean-Himalayan seismic belt. The seismic activities in our country are very frequent and so are the collapses and slides of slope triggered by earthquakes. Many collapses and slides of slope take place mainly in the west of China with many earthquakes and mountains, especially in Sichuan and Yunnan Provinces. When a strong earthquake happening, the damage especially in mountains area caused by geological hazards it triggered such as rock collapses, landslides and debris flows is heavier than that it caused directly. A conclusion which the number of lives lost caused by geological hazards triggered by a strong earthquake in mountains area often accounts for a half even more of the total one induced by the strong earthquake can be made by consulting the statistical loss of several representative earthquakes. As a result, geological hazards such as collapses and slides of slope triggered by strong earthquakes attract wide attention for their great costs. Based on field geological investigation, engineering geological exploration and material data analysis, chief conclusions have been drawn after systematic research on formation mechanism, key inducing factors, dynamic characteristics of geological hazards such as collapses and slides of slope triggered by strong earthquakes by means of engineering geomechanics comprehensive analysis, finite difference numerical simulation test, in-lab dynamic triaxial shear test of rock, discrete element numerical simulation. Based on research on a great number of collapses and landslides triggered by Wenchuan and Xiaonanhai Earthquake, two-set methods, i.e. the method for original topography recovering based on factors such as lithology and elevation comparing and the method for reconstructing collapsing and sliding process of slope based on characteristics of seism tectonic zone, structural fissure, diameter spatial distribution of slope debris mass, propagation direction and mechanical property of seismic wave, have been gotten. What is more, types, formation mechanism and dynamic characteristics of collapses and slides of slope induced by strong earthquakes are discussed comprehensively. Firstly, collapsed and slided accumulative mass is in a state of heavily even more broken. Secondly, dynamic process of slope collapsing and sliding consists of almost four stages, i.e. broken, thrown, crushed and river blocked. Thirdly, classified according to failure forms, there are usually four types which are made up of collapsing, land sliding, land sliding-debris flowing and vibrating liquefaction. Finally, as for key inducing factors in slope collapsing and sliding, they often include characteristics of seism tectonic belts, structure and construction of rock mass, terrain and physiognomy, weathering degree of rock mass and mechanical functions of seismic waves. Based on microscopic study on initial fracturing of slope caused by seismic effect, combined with two change trends which include ratio of vertical vs. horizontal peak ground acceleration corresponding to epicentral distance and enlarging effect of peak ground acceleration along slope, key inducing factor of initial slope fracturing in various area with different epicentral distance is obtained. In near-field area, i.e. epicentral distance being less than 30 km, tensile strength of rock mass is a key intrinsic factor inducing initial fracturing of slope undergoing seismic effect whereas shear strength of rock mass is the one when epicentral distance is more than 30 km. In the latter circumstance, research by means of finite difference numerical simulation test and in-lab dynamic triaxial shear test of rock shows that initial fracture begins always in the place of slope shoulder. The fact that fracture strain and shear strength which are proportional to buried depth of rock mass in the place of slope shoulder are less than other place and peak ground acceleration is enlarged in the place causes prior failure at slope shoulder. Key extrinsic factors inducing dynamic fracture of slope at different distances to epicenter have been obtained through discrete element numerical simulation on the total process of collapsing and sliding of slope triggered by Wenchuan Earthquake. Research shows that combined action of P and S seismic waves is the key factor inducing collapsing and sliding of slope at a distance less than 64 km to initial epicenter along earthquake-triggering structure. What is more, vertical tensile action of P seismic wave plays a leading role near epicenter, whereas vertical shear action of S seismic wave plays a leading role gradually with epicentral distance increasing in this range. On the other hand, single action of P seismic wave becomes the key factor inducing collapsing and sliding of slope at a distance between 64 km and 216 km to initial epicenter. Horizontal tensile action of P seismic wave becomes the key factor gradually from combined action between vertical and horizontal tensile action of P seismic wave with epicentral distance increasing in this distance range. In addition, initial failure triggered by strong earthquakes begins almost in the place of slope shoulder. However, initial failure beginning from toe of slope relates probably with gradient and rock occurrence. Finally, starting time of initial failure in slope increases usually with epicentral distance. It is perhaps that the starting time increasing is a result of attenuating of seismic wave from epicenter along earthquake-triggering structure. It is of great theoretical and practical significance for us to construct towns and infrastructure in fragile geological environment along seism tectonic belts and conduct risk management on earthquake-triggered geological hazards by referring to above conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General expressions used for extracting the orientation and alignment parameters of a symmetric top molecule from laser-induced fluorescence (LIF) intensity are derived by employing the density matrix approach. The molecular orientation and alignment are described by molecular state multipoles. Excitation and detection are circularly and linearly polarized lights, respectively. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population, ten orientation and fourteen alignment multipoles. The problem of how to extract the initial molecular state multipoles from the resolved LIF intensity is discussed.