224 resultados para double-clad fiber
Resumo:
The dispersion compensation characteristics of the chirped fiber grating (CFG) for different dispersion compensation positions are analyzed in externally modulated cable television (CATV) lightwave system and the analytic expression of the composite second order (CSO) distortion is derived. The analyses give a reasonable explanation for the position-dependent effect of CFG dispersion compensator, which was found in practical systems. Moreover, the theoretical result is also verified by an experiment. It is believed that the theory will be helpful in designing optical CATV fiber links with nodes at proper positions both for intensity amplification and dispersion compensation.
Resumo:
A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes, such as a MZI with a single ring resonator, arepresented, and some of the issues about device design and fabrication are also discussed.
Resumo:
In order to measure the diffraction-limit wavefront, we present three types of common-path double-shearing interferometers based on the theory of double shearing. Two pairs of half-aperture or whole-aperture wedge plates are used to introduce opposite tilt to realize the double-shearing function. By comparing the fringe widths in two fields, the marginal wavefront aberration can be obtained. In the paper, we give three different configurations: half-aperture configuration, whole-field configuration and double-interferometer configuration. The half-aperture configuration has the features of high sensitivity, stabilization and easy alignment. For the whole-field configuration, the interference fringes are displayed in two whole fields. Consequently, the divergent or convergent characteristic and aberration types of a wavefront can be identified visually. The whole-field configuration can be changed to the double-interferometer configuration for continuous test. Both small and large wavefront aberrations can be measured by the double-interferometer configuration. The minimum detectable wavefront aberration (W-0)(min) comes to 0.03 lambda. Lastly, we present the experimental results for the three types of double-shearing interferometers.
Resumo:
The polarization characteristics of electro-optical (EO) switches using fiber Sagnac interferometer (FSI) structures are theoretically investigated. Analytical solutions of output fields are presented when the twists and birefringence in a Sagnac loop are considered. Numerical calculations show that the twists of fiber, the orientation of the inserted phase retarder, and the splitting ratio of the coupler will influence both the output intensity and the output polarization properties of the proposed switch. A polarization-independent EO switch based on a Sagnac interferometer and a PUT bar was experimentally implemented, which showed good coincidence with the analytical results. The experiment showed a switch with 22 dB extinction ratio and less than 31.1 ns switching time. (c) 2006 Optical Society of America.
Resumo:
The original scanner for tilting orthogonal double prisms is studied to test the tracking performance in intersatellite laser communications. With a reduction ratio of more than 100 times from the change rate of the angle of beam deviation to that of the tilting angle of each prism, the theoretical analysis performed, as well as the verification experiment, indicates that the scanner can meet the requirements of the scanning accuracy superior to 0.5 mu rad with the scanning range greater than 500 mu rad and can facilitate the mechanical structure design. (c) 2006 Optical Society of America.
Resumo:
We demonstrate theoretically that the negatively chirped femtosecond laser pulse can be spectrally narrowed by cross-phase modulation. The new view is well Supported by numerical simulation. The negative chirp method in fibers might be useful in all optical wavelength switching applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The pulse compression induced by cross-phase modulation in birefringent dispersion decreasing fiber is discussed theoretically by solving the coupled Schrodinger equations which include the contribution of the high-order non-linear effects, and third-order dispersion. In particular, it is found that a high quality compressed signal pulse can be obtained by a pump pulse of low intense through the technique. The dependence of optimum compression on the non-linear factor N, time delay tau(d) and the dispersive ratio f is also discussed in detail. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We describe the rigorous results of a wide-angle laser beam scanner, obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape is discussed. The distortion to the beam varies with the different relative angles of double prisms. The scanner expands the beam in some directions while it contracts the beam in other directions. According to the conservation of energy, the distribution of the laser intensity is changed as well. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The frame of a laser diode transmitter for intersatellite communication is concisely introduced. A simple, novel and visual method for measuring the diffraction-limited wavefront of the transmitter by a Jamin double-shearing interferometer is proposed. To verify the validity of the measurement, the far-field divergence of beam is additionally rigorously analysed in terms of the Fraunhofer diffraction. The measurement, the necessary analyses and discussion are given in detail. By directly measuring the fringe widths and quantitatively interpreting the interference fringes, the minimum detectable wavefront height (DWH) of the wavefront is only 0.2 gimel (the distance between the perfect plane wavefront and the actual wavefront at the transmitting aperture) and the corresponding divergence is only 65.84 mu rad. This indicates that the wavefront approaches the diffraction-limited condition. The results show that this interferometer is a powerful tool for testing the semiconductor laser beam's wavefront, especially the diffraction-limited wavefront.
Resumo:
Grating pairs are widely used for pulse compression and stretching. Normally, the two gratings are identical. We propose a very simple structure with double-line-density reflective gratings for pulse compression and generation of double pulses, which has the advantages of no material dispersion, compact in volume, simple in structure, etc. The use of reflective Dammann gratings fully demonstrated the principle of this structure. The output pulses are well verified by a standard frequency-resolved optical gating apparatus. This structure will be highly interesting in ultrashort pulse compression and other more practical applications of femtosecond laser pulses. (c) 2007 Optical Society of America.
Resumo:
The dispersion compensation effect of the chirped fiber grating (CFG) is analyzed theoretically, and analytic expressions are derived for composite second-order (CSO) distortion in analog modulated sub-carrier multiplexed (AM-SCM) cable television (CATV) systems with externally and directly modulated transmitters. Simulations are given for the two kinds of modulations and for standard single mode fiber and non-zero dispersion shift fiber (NZDSF) systems. The results show that CFG could be used as a dispersion compensator in directly modulated systems, but its dispersion coefficient should be adjusted much more precisely than the externally modulated system. The requirements for the NZDSF system could be loosened much. It is proposed that directly modulated source may be used as a transmitter in CATV systems combined with tunable CFG dispersion compensator being adjusted precisely, which may be more cost-effective than externally modulation technology. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission. (c) 2007 Optical Society of America.
Resumo:
A specklegram in a multimode fiber (MMF) has successfully been used as a sensor for detecting external disturbance. Our experiments showed that the sensitivity in the sensor with a multiple longitudinal-mode laser as its source was much higher than that with a single longitudinal-mode laser. In addition, the near-field pattern observations indicated that the coupling between different transverse modes in the MMF is quite weak. Based on the experimental results, a theoretical model for the speckle formation is proposed, taking a bend-caused phase factor into consideration. It is shown in the theoretical analysis that the interferences between different longitudinal modes make a larger contribution to the specklegram signals. (C) 2007 Optical Society of America.