286 resultados para direct


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charged-particle spectra associated with direct photon (gamma(dir)) and pi(0) are measured in p + p and Au + Au collisions at center-of-mass energy root(S)(NN) = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between gamma(dir) and pi(0). Assuming no associated charged particles in the gamma(dir) direction ( near side) and small contribution from fragmentation photons (gamma(frag)), the associated charged-particle yields opposite to gamma(dir) (away side) are extracted. In central Au + Au collisions, the charged-particle yields at midrapidity (vertical bar eta vertical bar < 1) and high transverse momentum (3 < (assoc)(PT) < 16 GeV/c) associated with gamma(dir) and pi(0) (vertical bar eta vertical bar < 0.9, 8 < (trig)(PT) < 16 GeV/c) are suppressed by a factor of 3-5 compared with p + p collisions. The observed suppression of the associated charged particles is similar for gamma(dir) and pi(0) and independent of the gamma(dir) energy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90degreesC shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct reduction of SO2 to elemental sulfur in flue gas by the coupling of cold plasma and catalyst, being a new approach for SO2 reduction, was studied. In this process, CO2 can be disassembled to form CO, which acts as the reductant under the cold plasma. With the coupling of the cold plasma and the catalyst, sulfur dioxide was selectively reduced by CO to elemental sulfur with a byproduct of metal sulfate, e.g., FeSO4. In the present work, Fe2O3/gamma-Al2O3 was employed as the catalyst. The extent of desulfurization was more than 80%, and the selectivity of elemental sulfur is about 55%. The effects of water vapor, temperature, and the components of simulated flue gas were investigated. At the same time, the coupling of thermogravimetry and infrared method and a chemical analysis method were employed to evaluate the used catalyst. In this paper, we will focus on the discussion of the catalyst. The discussions of the detail of plasma will be introduced in another paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly active PtSn/C catalyst was prepared by a polyol method. The catalyst was reduced in H-2/Ar atmosphere at 600 degreesC for 2 h in order to obtain different metallic phase. TEM images show uniform dispersion of spherical metal nanoparticles with average diameters of 1.8 and 3.9 nm for the as-prepared and treated catalysts, respectively. UV-vis spectrophotometry is employed to monitor the preparation process and the results indicate that Pt-Sn complex formed once the precursors of Pt and Sn were mixed together. The structure properties of the samples were characterized using X-ray diffraction. The results show that after reduction, the catalyst tends to form PtSn alloy. TPR experiment results show that Sn exists in multivalent state in the as-prepared sample while only zero-valence Sn was detected in the treated sample, while it could not be excluded that the multivalent tin existed in the treated sample. Cyclic voltammetry (CV) technique and single direct ethanol fuel cell (DEFC) tests indicate that the as-prepared catalyst possesses superior catalytic activity for ethanol oxidation to the treated sample. The results suggest that Pt and multivalent Sn are the active species for ethanol oxidation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.