375 resultados para complexes métalliques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of luminescent organic-inorganic hydrid material consisting of Eu(III)-schiff base complex covalently bonded to silica xerogel was synthesized via the sol-gel method using a Eu (N-propylene salicylimine ligand) complex modified with pendant triethoxysilane groups (Eu(III)(salenHSi)). The Eu(III)(salenHSi) complex is characterized by Fourier transform infrared (FT-IR) spectroscopy. Luminescent properties of the complex and the resulted hybrid silica xerogels have been investigated at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-covalent complexes between three flavonoid glycosides (quercitrin, hyperoside and rutin) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:1 complexation of each flavonoid glycoside (guest) to the DM-beta-CD (host) was monitored in the negative ion mode by mixing each guest with an up to 30-fold molar excess of the host. The binding constants for all complexes were calculated by a linear equation in the order: DM-beta-CD:quercitrin > DM-beta-CD:rutin > DM-beta-CD:hyperoside. A binding model for the complexes has also been proposed based on the binding constants and tandem mass spectrometric data of these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New near-infrared-luminescent mesoporous materials were prepared by linking ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complexes to the ordered mesoporous MCM-41 through a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline. The resulting materials (denoted as Ln(hfth)(3)phen-M41 and Pr(tfnb)(3)phen-M41; Ln=Er, Yb, Nd, Sm; hfth = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb = 4,4,4-trifluoro-1-(2-naphthyl)- 1, 3-butanedionate) were characterized by powder X-ray diffraction, N-2 adsorption/desorption, and elemental analysis. Luminescence spectra of these lanthanide-complex functionalized materials were recorded, and the luminescence decay times were measured. Upon excitation at the absorption of the organic ligands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) ions by sensitization from the organic ligands moiety. The good luminescent performances enable these NIR-luminescent mesoporous materials to have possible applications in optical amplification (operating at 1300 or 1500 nm), laser systems, or medical diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of europium complexes were synthesized and their electroluminescent (EL) characteristics were studied. It was found by comparison that the different substituted groups, such as methyl, chlorine, and nitryl, on ligand 1,10-phenanthroline affect significantly the EL performance of devices based on these complexes. The more methyl-substituted groups on ligand 1,10-phenanthroline led to higher device efficiency. A chlorine-substituted group showed the approximate EL performance as two methyl-substituted groups, whereas a nitryl substituent reduced significantly the EL luminous efficiency. However, beta-diketonate ligand TTA and DBM exhibited similar EL performance. The improved EL luminous efficiency by proper substituted groups on the 1, 10-phenanthroline was attributed to the reduction of the energy loss caused by light hydrogen atom vibration, as well as concentration quenching caused by intermolecular interaction, and the match of energy level between the ligand and Eu3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel blue-emitting phosphorescent iridium(III) complexes with fluorinated 1,3,4-oxadiazole derivatives as cyclometalated ligands and dithiolates as ancillary ligands have been synthesized and fully characterized; highly efficient OLEDs have been achieved using these complexes in the light-blue to blueemitting region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One mu-dichloro bridged diiridium complex and three mononuclear iridium(III) complexes based on the 1,3,4-oxadiazole derivatives as cyclometalated ligands and acetylacetonate (acac) or dithiolates O,O'-diethyldithiophosphate (Et(2)dtp) or N,N'-diethyldithiocarbamate (Et(2)dtc) as ancillary ligands have been synthesized and systematically studied by X-ray diffraction analysis. The results reveal that three mononuclear complexes all adopt distorted octahedral coordination geometry around the iridium center by two chelating ligands with cis-C-C and trans-N-N dispositions, which have the same coordination mode as the diiridium dimer. The dinuclear complex crystallizes in the monoclinic system and space group C2/c, whereas three mononuclear iridium complexes are all triclinic system and space group P(1) over bar. In the stacking structure of the dimer, one-dimensional tape-like chains along the b-axis are formed by hydrogen bondings, which are strengthened by pi stacking interactions between phenyl rings of 1,3,4-oxadiazole ligands. Then these chains assemble a three-dimensional alternating peak and valley fused wave-shape structure. In each stacking structure of three mononuclear complexes, two molecules form a dimer by the C-H center dot center dot center dot O hydrogen bondings, and these dimers are connected by pi stacking interactions along the b-axis, constructing a zigzag chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkane elimination reactions of amino-amino-bis(phenols) H2L1-4, Salan H2L5, and methoxy-beta-diimines HL6,7 with lanthanide tris(alkyl) s, Ln(CH2SiMe3)(3)(THF)(2) (Ln = Y, Lu), respectively, afforded a series of lanthanide alkyl complexes 1-8 with the release of tetramethylsilane. Complexes 1-6 are THF-solvated mono( alkyl) s stabilized by O, N, N, O-tetradentate ligands. Complexes 1-3 and 5 adopt twisted octahedral geometry, whereas 4 contains a tetragonal bipyramidal core. Bearing a monoanionic moiety L-6 (L-7), complex 7 ( 8) is a THF-free bis(alkyl). In complex 7, the O, N, N-tridentate ligand combined with two alkyl species forms a tetrahedral coordination core. Complexes 1, 2, and 3 displayed modest activity but high stereoselectivity for the polymerization of rac-lactide to give heterotactic polylactide with the racemic enchainment of monomer units P-r ranging from 0.95 to 0.99, the highest value reached to date. Complex 5 exhibited almost the same level of activity albeit with relatively low selectivity. In contrast, dramatic decreases in activity and stereoselectivity were found for complex 4. The Salan yttrium alkyl complex 6 was active but nonselective. Bis(alkyl) complexes 7 and 8 were more active than 1-3 toward polymerization of rac-LA, however, to afford atactic polylactides due to di-active sites. The ligand framework, especially the "bridge" between the two nitrogen atoms, played a significant role in governing the selectivity of the corresponding complexes via changing the geometry of the metal center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N,N-bidentate ligand 2-{(N-2,6-diisopropylphenyl)iminomethyl)}pyrrole (L-1) and the N,N,P-tridentate ligand 2-{(N-2-diphenylphosphinophenyl)iminomethyl)}pyrrole (L-2) have been prepared. Their reactions with homoleptic yttrium tris(alkyl) compound Y(CH2SiMe3)(3)(THF)(2) have been investigated. Treatment of Y(CH2SiMe3)(3)(THF)(2) with 1 equiv of L-1 generated a THF-solvated bimetallic (pyrrolylaldiminato)yttrium mono(alkyl) complex (1) of central symmetry. In this process, L-1 is deprotonated by metal alkyl and its imino CN group is reduced to C-N by intramolecular alkylation, generating dianionic species that bridge two yttrium alkyl units in a unique eta(5)/eta(1):kappa(1) mode. The pyrrolyl ring behaves as a heterocyclopentadienyl ligand. Reaction of Y(CH2SiMe3)(3)(THF)(2) with 2 equiv of L-1 afforded the monomeric bis(pyrrolylaldiminato)yttrium mono(alkyl) complex (2), selectively. Amination of 2 with 2,6-diisopropylaniline gave the corresponding yttrium amido complex (3). In 3 the pyrrolide ligand is monoanionic and bonds to the yttrium atom in a eta(1):kappa(1) mode. The homoleptic tris(eta(1):kappa(1)-pyrrolylaldiminato)yttrium complex (4) was isolated when the molar ratio of L-1 to Y(CH2SiMe3)(3)(THF)(2) increases to 3:1. Reaction of L-2 with equimolar Y(CH2SiMe3)(3)(THF)(2) afforded an asymmetric binuclear complex (5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of yttrium tris(alkyl)s, Y(CH2SiMe3)(3)(THF)(2), by equimolar H(C5Me4)SiMe3(HCp') and indene (Ind-H) afforded (eta(5)-Cp')Y(CH2SiMe3)(2)(THF) (1) and (eta(5)-Ind)Y(CH2SiMe3)(2)(THF) (2) via alkane elimination, respectively. Complex 1 reacted with methoxyamino phenols, 4,6-(CH3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2-OH (HL1) and 4,6-(CMe3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2OH (HL2) gave mixed ligands supported alkyl complexes [(eta(5)-Cp')(L)]Y(CH2SiMe3) (3: L = L-1; 4: L = L-2). Whilst, complex 2 was treated with HL2 to yield [(eta(5)-Ind)(L-2)]Y(CH2SiMe3) (5). The molecular structures of 3 and 5 were confirmed by X-ray diffraction to be mono(alkyl)s of THF-free, adopting pyramidal and tetragonal-bipyramidal geometry, respectively. Complexes 3 and 5 were high active initiators for the ring-opening polymerization Of L-lactide to give isotactic polylactide with high molecular weight and narrow to moderate polydispersity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.