521 resultados para chemical vapor deposition processes
Resumo:
In this paper, about 30 mu m thick B-doped polycrystalline silicon (poly-Si) thin films were deposited on quartz substrates, n-type single crystalline silicon wafers and p(++)-type poly-Si ribbons by a rapid thermal chemical vapour deposition system in a temperature range from 1000 to 1150 degrees C. Activation energy measurement and room temperature/temperature dependent Hall effect measurement were performed on the poly-Si thin films prepared on the former two kinds of substrates, respectively. It seems that the electrical properties of as-prepared poly-Si thin films could be qualitatively explained by Seto's grain boundary (GB) trapping theory although there is a big difference between our samples and Seto's in gain size and film thickness etc. The experimental results reconfirm that GB itself is a kind of most effective recombination center with trapping level near the midgap and trapping state density in the order of 1012 cm(-2) magnitude. Electron beam induced current measurements on the poly-Si thin films prepared on the poly-Si ribbons also show that severe recombination occurs at the positions of GBs. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror (SESAM) from which we achieved a 10 ps pulse duration at 150 MHz repetition rate. The SESAM was grown by metal organic chemical vapour deposition at low temperature. The recovery time was measured to be 0.5 ps, indicating the potential pulse compression to sub-picoseconds.
Resumo:
We report the transmission-electron microscopy study of the defects in wurtzitic GaN films grown on Si(111) substrates with AIN buffer layers by the metal-organic chemical vapour deposition method. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations passing through the MQW. No evident reduction of the edge dislocations density by the MQW was observed. It was found that dislocations with screw component can be located at the boundaries of sub-grains slightly in-plane misoriented.
Resumo:
Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved PL (TRPL) at various temperatures. The fast red-shift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(-t/,tau)13], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed QDs or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent beta on temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered QDs. Furthermore, the localized states are found to have 0D density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The microstructure and its annealing behaviours of a-Si:O:H film prepared by PECVD are investigated in detail using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and Infrared absorption spectroscopy. The results indicate that the as-deposited a-Si:O:H film is structural inhomogeneous, with Si-riched phases surrounded by O-riched phases. The Si-riched phases are found to be nonhydrogenated amorphous silicon (a-Si) clusters, and the O-riched phases SiOx:H (x approximate to 1. 35) are formed by random bonding of Si, O and H atoms. By high-temperature annealing at 1150 degreesC, the SiOx:H (x approximate to 1.35) matrix is shown to be transformed into SiO2 and SiOx ( x approximate to 0.64), during which all of the hydrogen atoms in the film escape and some of silicon atoms are separated from the SiOx:H ( x approximate to 1.35) matrix; The separated silicon atoms are found to be participated in the nucleation and growth processes of solid-phase crystallization of the a-Si clusters, nano-crystalline silicon (ne-Si) is then formed. The microstructure of the annealed film is thereby described with a multi-shell model, in which the ne-Si clusters are embedded in SiOx (x = 0.64) and SiO2. The former is located at the boundaries of the nc-Si clusters, with a thickness comparable with the scale of nc-Si clusters, and forms the transition oxide layer between the ne-Si and the SiO2 matrix.
Resumo:
The authors report on the fabrication of 980 nm InGaAs strained quantum well lasers with hybrid materials of InGaAsP as waveguide and AlGaAs as cladding grown by metal organic chemical vapour deposition. The InGaAs/InGaAsP/AlGaAs diode lasers (100 x 800 mu m) with broadened waveguide structure exhibit a threshold current of 180 mA, a slope efficiency of 1.0 W/A, and a high characteristic temperature coefficient (T-0) of 230 K.
Resumo:
GexSi1-x epilayers were grown at 700-900 degrees C by atmospheric pressure chemical vapour deposition. GexSi1-x, Si and Ge growth rates as functions of GeH4 flow are considered separately to investigate how the growth of the epilayers is enhanced. Arrhenius plots of Si and Ge incorporation in the GexSi1-x growth show the activation energies associated with the growth rates are about 1.2 eV for silicon and 0.4 eV for germanium, indicating that Si growth is limited by surface kinetics and Ge growth is limited by mass transport. A model based on this idea is proposed and used to simulate the growth of GexSi1-x. The calculation and experiment are in good agreement. Growth rate and film composition increase monotonically with growth pressure; both observations are explained by the model.
Resumo:
Polycrystalline silicon (polysilicon) has been used as an important structural material for microelectro-mechnical systems (MEMS) because of its compatibility with standard integrated circuit (IC) processes. As the structural layer of micromechanical high resonance frequency (high-f) and high quality factor (high-Q) disk resonators, the low residual stress and low resistivity are desired for the polysilicon thin films. In the present work, we investigate the effect of deposition and annealing conditions on the residual stress and resistivity for in-situ deposited low pressure chemical vapor deposition (LPCVD) polysilicon films. Low residual stress (-100 MPa) was achieved in in-situ boron-doped polysilicon films deposited at 570 degrees C and annealed at 1000 degrees C for 4 hr. The as-deposited amorphous polysilicon films were crystallized by the rapid thermal annealing and have the (111)-preferred orientation, the low tensile residual stress is expected for this annealed film, the detailed description on this work will be reported soon. The controllable residual stress and resistivity make these films suitable for high-Q and bigh-f micro-mechanical disk resonators.
Resumo:
ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.
Resumo:
Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAssb on (100) Gasb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17 mu m in wavelength. The surface of InAssb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAssb film shows to be of n-type conduction with an electron concentration of 8.52 x 10(16) cm(-3).
Resumo:
Quantum well disordering of GaAs/AlGaAs multiple quantum well(MQW) has been accomplished with only plasma enhanced chemical vapor deposited (PECVD) SiN cap layer growth. The amount of blue shift increases with SiN growing time. This result has been explained by the vacancy indiffusion during PECVD SiN growth. Rapid thermal annealing (RTA) of the sample after SiN cap layer growth at 850 degrees C for 35 s caused a larger amount of blue shift than those obtained without RTA. By considering the model of Al diffusion from AlGaAs barrier into GaAs QWs together with the result from photoluminescence (PL) measurement, Al diffusion coefficients were calculated. The Al diffusion coefficient due to PECVD SiN was estimated at about 3 x10(-17) cm(2)/s. It was possible to extract the effect of RTA on the QW disordering, which showed that the amount of the blue shift and the Al diffusion coefficient due only to RTA increases with SiN cap layer thickness as reported by Chi et al.(10))
Resumo:
The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN_x:H by HF solution. A low etch rate was achieved by increasing the SiH_4 gas flow rate or annealing temperature, or decreasing the NH_3 and N_2 gas flow rate. Concen-trated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO_2 and SiN_x:H. A high etching selectivity of SiO_2 over SiN_x:H was obtained using highly concentrated buffered HF.
Resumo:
Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.