462 resultados para capillary electrochromatography
Separation of drug enantiomers by capillary electrophoresis in the presence of neutral cyclodextrins
Resumo:
This is a selected review, highlighting our results obtained in an extended screening program ("The German-Chinese Drug Screening Program"), with a focus on a set of original data obtained with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin(TM-beta-CD) as the chiral solvating agent (CSA). The enantioseparation of 86 drugs by capillary zone electrophoresis in the presence of this CSA was successful for 47 drugs. The migration separation factors (alpha(m)) and the migration retardation factors (R-m) were compared with those found for native beta-cyclodextrin (beta-CD). The patterns thus obtained were also compared with those observed for hexakis(2,3,6-tri-O-methyl)-alpha-CD (TM-alpha-CD) and octakis(2,3,6-tri-O-methyl)-gamma-CD (TM-gamma-CD), respectively. From the statistical data, it can be concluded that there is a remarkable influence of the analyte structure on the electrophoretic data. A substructure 4H was found in the analyte structure that has a significant influence on the analytes' behaviour. Thus, analytes bearing the substructure 4H do not only have a strong affinity to the CDs but also a high rate of success of chiral separation in all systems reviewed. In light of this, the different ring sizes of native cyclodextrins (alpha-, beta- and gamma-CD) readily explain their behaviour towards a limited test set of chiral drugs. Sterical considerations point to the significance of side-on-binding versus inclusion in the cavity of the host. In addition to the findings from the screening program, numerous references to the Literature are given. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The optimization of the organic modifier concentration in micellar electrokinetic capillary chromatography (MECC) has been achieved by a uniform design and iterative optimization method, which has been developed for the optimization of composition of the mobile phase in high performance liquid chromatography. According to the proposed method, the uniform design technique has been applied to design the starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as the orthano design. The hierarchical chromatographic response function has been modified to evaluate the separation quality of a chromatogram in MECC. An iterative procedure has been adopted to search the optimal concentration of organic modifiers for improving the accuracy of retention predicted and the quality of the chromatogram. Validity of the optimization method has been proved by the separation of 31 aromatic compounds in MECC. (C) 2000 John Wiley & Sons, Inc.
Resumo:
This paper gives a capillary electrophoretic method for the separation of 15 urinary normal and modified nucleosides from cancer patients in less than 40 min. A 500 mmx50 mu m uncoated capillary column (437.5 mm to window) was used. The effects of the voltage and the sodium dodecyl sulfate (SDS) concentration in the buffer on the separation were studied. With reproducibilities of migration times better than 1.2% (R.S.D.) and determined concentrations better than 5-25%, depending on the concentrations of nucleosides in the urine, the analytical characteristics of the method were food. Using this developed method, the concentrations of 13 normal and modified nucleosides, extracted on a phenyl boronic acid affinity chromatography column, in 25 urines from patients of 14 kinds of cancer were determined. The levels (nmol/mol creatinine) of modified nucleosides in urines from cancer patients were increased as compared with those in normal urines. (C) 1998 Elsevier Science B.V.
Resumo:
Capillary zone electrophoresis (CZE) was used to study the interaction between pUC19DNA (pUC19) and ovalbumin (Ova). Samples containing pUC19 and Ova at various ratios were incubated at room temperature and were then separated by CZE with tris-acetate buffer at pH 7.2. Reduction in ultraviolet (UV) absorbance of pUC19 was due to the decrease of free pUC19 after binding to Ova. The binding constant of the interaction calculated from the Scatchard plot was (1.46+/-0.15) x 10(5) M-1. The use of polyacrylamide-coated capillary showed better effects than that of uncoated capillary. The results show that it is important to keep a constant ionic strength in the samples in order to obtain accurate quantitative data in binding assays by CZE.
Resumo:
Capillary zone electrophoresis (CZE) and affinity capillary electrophoresis (ACE) were applied to study the interaction between netropsin and a 14mer double-stranded DNA (dsDNA). The use of a polyacrylamide coated capillary can suppress the electroosmotic flow (EOF) and the adsorption of DNA onto the wall. Better analysis of the DNA was achieved in a coated capillary upon Tris-acetate. In CZE, the peak width broadened due to the affinity interaction between dsDNA and netropsin. In ACE, o-toluic acid, a negatively charged molecule was used as the indicator to monitor the changes of EOF when netropsin was added to the running buffer. The 14mer dsDNA showed different mobilities upon various concentrations of netropsin due to the affinity interaction between the dsDNA and netropsin. The binding constants of this interaction were (1.07 +/- 0.10) . 10(5) M-1 calculated from CZE and (4.75 +/- 0.30) . 10(4) M-1 from ACE using a Scatchard plot. The binding stoichiometry was 1:1 calculated from CZE which was superior to ACE in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Monolithic capillary columns for affinity chromatography were prepared by an in situ polymerization procedure using glycidyl methacrylate (GMA) as a monomer and trimethylolpropane trimethacrylate (TRIM) and ethylene dimethacrylate (EDMA) as cross-linkers, respectively. Scanning electron microscopy was applied to characterize the morphology of the end of monolithic capillary and mercury intrusion porosimetry to characterize the polymer rod prepared within the confines of a stainless steel column with 50 mm x 4.6 mm i.d. under the same polymerization condition. Obvious differences in the porous properties between the TRIM- and EDMA-based monoliths could be observed. Moreover, the mechanical stability of these two monolithic capillary columns was compared by testing the reproducibility of the column performance. The rod prepared with GMA and TRIM proved to be mechanically more stable than that prepared with GMA and EDMA. Protein A was immobilized on the monolithic rod for affinity chromatography and the experiments were performed on a capillary electrophoresis instrument, using its pressure system as the driving force. Non-specific adsorption was not observed on the TRIM-based affinity column, as proved with bovine serum albumin (BSA) as a test protein. The affinity column prepared with GMA and TRIM was then applied to determine the hIgG concentration in human serum. The correlative coefficient of the calibration curve reached 0.9942. The amount of adsorbed hIgG was unaffected by the flow rate of the loading buffer, which makes this method suitable for fast determination of biomacromolecules in microliter samples. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Phenothiazine drugs, chlorpromazine hydrochloride (CPZ) and promethazine hydrochloride (PMZ), were determined with Ru(bpy)(3)(2+) electrochemiluminescene by the capillary electrophoresis (CE-ECL). It was found that both CPZ and PMZ could produce an intermediate that acted as coreactants to react with Ru(bpy)(3)(2+) to produce excited states which were capable of emitting light. This CE-ECL detection method had high sensitivity, good selectivity and reproducibility for CPZ and PMZ determination.
Resumo:
Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated.
Resumo:
A capillary electrophoresis with electrochemical detection(CE-ED) method was developed for the quality analysis of herbal medicine products prepared from the same herb of Herba Sarcandrae: Fufang Caoshanhu tablets, Qingrexiaoyanning capsules, and Xuekang oral liquids. Under the optimal analysis conditions, the low detection limit[1.0x10(-7) mol/L(S/N=3)] and the wide linear range(1.0x10(-7)-1.0x10(-4) mol/L) were obtained for quality standard compound of isofraxidin. The precisions of the peak current and the migration time(as RSDs) for the real sample analysis were 2.0%-2.6%, and 1.2%-1.8% for isofraxidin, respectively.
Resumo:
Capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection was used to explore the kinetics ofthe enzymatic reaction. The different effects ofreaction conditions including the concentration of Mn2l, incubation temperature and pH on PFOlidase (PLD, EC 3.4.13.9) activity in erythrocyte lysates against three different substrates, Gly-Pro, Val-Pro and Leu-Pro were investigated. Also, the effects of colchicine which can prevent or delay cancer ofliver on the PLD activity were studied.
Resumo:
A capillary electrophoresis method coupled with electrochemiluminescence detection for the analysis of quinolizidine alkaloids was established, especially, oxymatrine (OMT) which could not be measured by previous electrochemiluminescence methods was detected sensitively herein. Complete separation of sophoridine (SR), matrine (MT) and OMT was achieved within 13 min using a background electrolyte of 50mM phosphate buffer at pH 8.4 and a separation voltage of 15 kV. The calibration curves showed a linear range from 2.8 x 10(-8) to 4.4 x 10(-7) M for SR, 2.7 x 10(-8) to 4.4 x 10(-7) M for MT.
Resumo:
In this paper, we described a simple and rapid method, capillary electrophoresis with electrochemiluminescence (CE-ECL) detection using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)), to simultaneously detect pethidine and methadone. Analytes were injected to separation capillary of 67.5 cm length (25 mu m i.d., 360 mu m o.d.) by electrokinetic injection for 10 s at 10 kV.