232 resultados para adsorption by clay
Resumo:
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+.
Resumo:
A new type of sulfonated clay (clay-SO3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO3H was 51.8 mequiv. (100 g)(-1), which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method.
Resumo:
A sol-gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona-resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film.
Resumo:
Cowpea mosaic virus (CPMV)-based thin films are biologically active for cell culture. Using layer-by-layer assembly of CPMV and poly(diallyldimethylammonium chloride), quantitatively scalable biomolecular surfaces were constructed, which were well characterized using quartz crystal microbalance, UV-vis and atomic force microscopy. The surface coverage of CPMV nanoparticles depended on the adsorption time and pH of the virus solution, with a greater amount of CPMV adsorption occurring near its isoelectric point. It was found that the adhesion and proliferation of NIH-3T3 fibroblasts can be controlled by the coverage of viral particles using this multilayer technique.
Resumo:
Electrostatic assembly of one species can be realized using gelatin as a polyampholyte. Under suitable conditions where the electrostatic attraction and repulsion were both significant and in balance, linear growth of multilayers driven by electrostatic interactions was sustained over many successive assembly steps, and the maximum amount of adsorption of each layer was reached when the solution pH was around the isoelectric point. The rearrangement of the adsorbed chains after drying was confirmed by contact angle analysis. In addition with only one species involved, the assembled thin films should be chemically uniform rather than layered.
Resumo:
Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.
Resumo:
Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.
Resumo:
A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.
Resumo:
Pd-Au/C and Pd-Ag/C were found to have a unique characteristic of evolving high-quality hydrogen dramatically and steadily from the catalyzed decomposition of liquid formic acid at convenient temperature, and further this was improved by the addition of CeO2(H2O)(x).
Resumo:
The C-60 dianion is used to reduce tetrachloroauric acid (HAuCl4) for the first time; three-dimensional C-60 bound gold (Au-C-60) nanoclusters are obtained from C-60-directed self-assembly of gold nanoparticles due to the strong affinities of Au-C-60 and C-60-C-60. The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C-60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies.
Resumo:
A new approach to one-dimensional organization of gold nanoparticles (2-4 nm) is described, using poly(4-vinylpyridine) (P4VP) molecular chain as a template with the mediation of free Cu2+ ion coordination. The assembly was conducted on freshly prepared mica surfaces and in aqueous solution, respectively. The surface assembly was characterized by tapping mode atomic force microscopy (AFM), observing the physisorbed molecules in their chain-like conformation with an average height of 0.4 nm.
Resumo:
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV-vis, fluorescence, circular dichroism (CD) spectroscopy, UV-rnelting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation.
Resumo:
This work is focused on the factors influencing the intercalation of maleated polypropylene (PPMA) into organically modified montmorillonite (OMMT). Two kinds of PPMA were used to explore the optimal candidate for effective intercalation into OMMT. The grafting degree of maleic anhydride and the viscosity of PPMA have effects on the diffusion of polymer molecules. Moreover, the loading level of surfactant was varied to optimize the modification of montmorillonite because the appropriate loading level can provide a balance between interlayer distance and steric hindrance. The kind of surfactant changes the interaction between OMMT and PPMA, and accordingly the intercalation of PPMA is different, resulting in the discrepancy of the intercalation of PPMA.
Resumo:
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+. The experimental data have been analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results showed that the biosorption equilibrium was well described by both the Langmuir and Redlich-Peterson isotherms.
Resumo:
By reducing the attraction between the platelets of octaclecylammonium chloride modified montmorillonite (OMMT-C18) via pre-intercalation of maleated polypropylene (MAPP), OMMT-C18 was exfoliated in thermoplastic polyurethane (TPU) matrix during melt-mixing. Wide angle X-ray diffraction, transmission electron microscopy and thermogravimetric analysis were used to investigate the microstructure of TPU nanocomposites. Three factors (including introducing sequence, the kind and the content of MAPP) showed important effects on the dispersion degree of OMMT-C18 in TPU matrix. The results confirmed that the pre-intercalation of MAPP was necessary for the exfoliation of OMMT-C18; however, the role of MAPP in TPU nanocomposites was different from that in polypropylene nanocomposites.