156 resultados para Zero-coupon yield curve
Resumo:
In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.
Resumo:
This study examines the link between the economic growth and the environmental quality. Based on a panel data set, a N-shaped Environmental Kuzents Curve has been found for the sample period: a cubic relationship between per capita GDP and emissions of sulphur dioxide (SO2). We also find that energy consumption is an important determinant of environmental degradation. The empirical results suggest that we should promote environmental protection as soon as possible.
Resumo:
Well-defined 3D Fe3S4 flower-like microspheres were synthesized via a simple biomolecule-assisted hydrothermal process for the first time. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. The electrical conductivity property of the as-synthesized Fe3S4 sample exhibited a rectifying characteristic when a forward bias was applied for the bottom-contacted device. The magnetic properties of the products were studied as well and the results demonstrated that the products presented ferromagnetic properties related to the corresponding microstructure. In addition, we first verified that the Fe3S4 flower-like microspheres could store hydrogen electrochemically, and a discharge capacity of 214 mA h g(-1) was measured without any activation under normal atmospheric conditions at room temperature.
Resumo:
Here, we first report a facile one-step one-phase synthetic route to achieve size-controlled gold micro/nanoparticles with narrow size distribution by using o-diaminobenzene as a reducing agent in the presence of poly(N-vinyl-2-pyrrolidone) via a simple wet-chemical approach. All experimental data including that from scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques indicates that the gold micro/nanoparticles with a narrow size distribution were produced in high yield (similar to 100%).
Resumo:
Soluble NdCl3 center dot 3EHOH (2-ethyl hexanol) in hexane combined with AlEt3 is highly active for isoprene polymerization in hexane. The NdCl3 center dot 3EHOH/AlEt3 has higher activity than the typical binary catalyst NdCl3 center dot 3(i)PrOH (isopropanol)/AlEt3 and ternary catalyst NdV3 (neodymium versatate)/AlEt2Cl/Al(i-Bu)(2)H. The molecular weight of polyisoprenes can be controlled by variation of [Nd], [Al]/[Nd] ratio and polymerization temperature and time. The NdCl3 center dot 3EHOH/AlEt3 catalyst polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 96%), high molecular weight (ca. 10(5)) and relatively narr ow molecular weight distributions (M-w/M-n = 2.0-2.8) simultaneously. More importantly, some living polymerization characteristics were demonstrated: (a) absence of chain termination; (b) linear correlation between M-n and polymer yield; (c) increment of molecular weight in the 'seeding' polymerization. Though some deviation from the typical living polymerization such as molecular weight distribution is not narrow enough and the line of M-n and polymer yield does not extrapolate to zero, controlled polymerization with the current catalyst can still be concluded.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
A crosslinking strategy was used to improve the thermal and mechanical performance of poly(propylene carbonate) (PPC): PPC bearing a small moiety of pendant C=C groups was synthesized by the terpolymerization of allyl glycidyl ether (AGE), propylene oxide (PO), and carbon dioxide (CO2). Almost no yield loss was found in comparison with that of the PO and CO2 copolymer when the concentration of AGE units in the terpolymer was less than 5 mol %. Once subjected to UV-radiation crosslinking, the crosslinked PPC film showed an elastic modulus 1 order of magnitude higher than that of the uncrosslinked one. Moreover, crosslinked PPC showed hot-set elongation at 65 degrees C of 17.2% and permanent deformation approaching 0, whereas they were 35.3 and 17.2% for uncrosslinked PPC, respectively. Therefore, the PPC application window was enlarged to a higher temperature zone by the crosslinking strategy.
Resumo:
PtCl62- anions were assembled on a glassy carbon electrode with [tetrakis(N-methylpyridyl)porphyrinato]cobalt cations through layer-by-layer method. then electrochemically reduced to yield zero valent Pt nanoparticles. Regular growth and surface morphology of the multilayer films were characterized by UV/vis. XPS and AFM.
Resumo:
Nanometer-scale elastic moduli and yield strengths of polycarbonate (PC) and polystyrene (PS) thin films were measured with atomic force microscopy (AFM) indentation measurements. By analysis of the AFM indentation force curves with the method by Oliver and Pharr, Young's moduli of PC and PS thin films could be obtained as 2.2 +/- 0.1 and 2.6 +/- 0.1 GPa, respectively, which agree well with the literature values. By fitting Johnson's conical spherical cavity model to the measured plastic zone sizes, we obtained yield strengths of 141.2 MPa for PC thin films and 178.7 MPa for PS thin films, which are similar to2 times the values expected from the literature. We propose that it is due to the AFM indentation being asymmetric, which was not accounted for in Johnson's model. A correction factor, epsilon, of similar to0.72 was introduced to rescale the plastic zone size, whereupon good agreement between theory and experiment was achieved.
Resumo:
The technique of high-temperature high-pressure extraction with pyridine has been successfully utilized to extract a wide variety of endohedral rare-earth fullerenes of the type Ln@C-2n (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Ln@C-80, Ln@C-82, and Ln(2)@C-80 for most of the rare-earth metals can be produced with high-yield and selectively extracted from the carbon-are evaporation soot. Metallofullerenes containing Sm, Eu, and Yb (which could have +2 oxidation states) are especially difficult to extract. Some possible reasons for the high-yield extraction are discussed. The laser desorption mass spectrometric characterization results indicate a relationship between the extraction yields of metallofullerenes and the oxidation states and ionic radii of the rare-earths.
Resumo:
The successful encapsulation of dysprosium(Dy) into fullerene cages by activating the Dy2O3 containing graphite rods in situ, ''back-burning'' carbon-arc evaporation with a high-yield of pyridine extraction technique is reported.
Resumo:
The viscoelastic behavior of phenolphthalein poly(ether ketone) (PEK-C) and its relationship to yielding was studied. The following phenomena were observed: (1) The relaxation behavior at strain near yield closely approximated that at low strain but near the T-g; (2) the temperature and strain rate dependence of yield stress could be modeled by the one-process Eyring theory and the value of the activation volume was the same as that of the glass transition; and (3) according to the Zhurkov-Bueche equation, the cu transition was related to the yield behavior. All these results indicated that the glass transition was the main factor that controlled the yield behavior. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Endohedral metallofullerene Gd@C-2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Gd@C-2n for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C-82, Gd@C-74 were considered to be fairly stable and soluble metallofullerene species.