144 resultados para Superconducting defects
Resumo:
Superconducting quarter-wave resonators, due to their compactness and their convenient shape for tuning and coupling, are very attractive for low-beta beam acceleration. In this paper, two types of cavities with different geometry have been numerically simulated: the first type with larger capacitive load in the beam line and the second type of lollipop-shape for 100 MHz, beta=0.06 beams; then the relative electromagnetic parameters and geometric sizes have been compared. It is found that the second type, whose structural design is optimized with the conical stem and shaping drift-tube, can support the better accelerating performance. At the end of the paper, some structural deformation effects on frequency shifts and appropriate solutions have been discussed.
Resumo:
A Penning trap system called Lanzhou Penning Trap (LPT) is now being developed for precise mass measurements at the Institute of Modern Physics (IMP). One of the key components is a 7 T actively shielded superconducting magnet with a clear warm bore of 156 mm. The required field homogeneity is 3 x 10(-7) over two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis. We introduce a two-step method which combines linear programming and a nonlinear optimization algorithm for designing the multi-section superconducting magnet. This method is fast and flexible for handling arbitrary shaped homogeneous volumes and coils. With the help of this method an optimal design for the LPT superconducting magnet has been obtained.
New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)
Resumo:
Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.
Resumo:
A penning trap system called LPT (LANZHOU PENNING TRAP) is now being developed for precise mass measurements in IMP (Institute of Modern Physics). The most key component of LPT is a superconducting magnet. A Phi 156 mm warm bore and two cylinder good field regions with a distance of 220 mm are required for trapping ions and measurements. As the required homogeneity is better than 0.5 ppm, several complicated coaxial coils are used to produce such a magnetic field. The size and position of these coils are optimized by using a method combining linear program with multiobjective optimization. Superconducting shim coils and passive shim pieces are used to eliminate inevitable winding tolerances and environmental influence. The fringe field is decreased to 5 Gs at 2 m line from the center of the magnet by active shielding coils. The designs of the mechanical structure, the quench protection system are also introduced in this paper.
Resumo:
Some superconducting magnets research at IMP (Institute of Modern Physics, CAS, Lanzhou) will be described in this paper. Firstly, a superconducting electron cyclotron resonance ion source (SECRAL) was successfully built to produce intense beams of highly charged heavy ions for Heavy Ion Research Facility in Lanzhou (HIRFL). An innovation design of SECRAL is that the three axial solenoid coils are located inside of a sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. Some excellent results of ion beam intensity have been produced and SECRAL has been put into operation to provide highly charged ion beams for HIRFL since May 2007. Secondly, a super-ferric dipole prototype of FAIR Super-FRS is being built by FCG (FAIR China Group) in cooperation with GSI. Its superconducting coils and cryostat is made and tested in the Institute of Plasma Physics (IPP, Hefei), and it more 50 tons laminated yoke was made in IMP. This super-ferric dipole static magnetic field was measured in IMP, it reach to the design requirement, ramping field and other tests will be done in the future. Thirdly, a 3 T superconducting homogenous magnetic field solenoid with a 70 mm warm bore has been developed to calibrate Hall sensor, some testing results is reported. And a penning trap system called LPT (Lanzhou Penning Trap) is now being developed for precise mass measurements.
Resumo:
A 7 Tesla superconducting magnet with a clear warm bore of 156 mm in diameter has been developed for Lanzhou Penning Trap at the Institute of Modern Physics for high precision mass measurement. The magnet is comprised of 9 solenoid coils and operates in persistent mode with a total energy of 2.3 MJ. Due to the considerable amount of energy stored during persistent mode operation, the quench protection system is very important when designing and operating the magnet. A passive protection system based on a subdivided scheme is adopted to protect the superconducting magnet from damage caused by quenching. Cold diodes and resistors are put across the subdivision to reduce both the voltage and temperature hot spots. Computational simulations have been carried in Opera-quench. The designed quench protection circuit and the finite element method model for quench simulations are described; the time changing of temperature, voltage and current decay during the quench process is also analysed.
Resumo:
The superconducting magnet of the LPT (Lanzhou Penning trap) consists of nine coaxial coils. The maximum magnetic field is 7 T and thus results in a large magnetic force. In order to assure the mechanical stability, it is necessary to do the stress analysis of the magnet system. The 3D Finite Element Analysis of thermal and mechanical behavior was presented in this paper. For the numerical simulation and analysis of the phenomena inside the structure, the ADINA and TOSCA code were chosen right from start. The ADINA code is commonly used for numerical simulations of the structure analysis [1] and the TOSCA code is professional software to calculate the magnetic field and Lorentz Forces. The results of the analysis were evaluated in terms of the stress and deformation.
Resumo:
A 3 T superconducting magnet with a 70 mm diameter warm bore and energy storage of 47 kJ has been successfully fabricated and tested, which can be used to calibrate Hall sensors in high magnetic field as well as conduct superconducting experiments. The magnet consists of three solenoid coils and an iron yoke. The homogeneity of the magnetic field in the region of interest (ROI) is +/- 6.0 x 10(-5). The coils of the magnet were fabricated with NbTi-Cu superconducting wire and the stray magnetic field is shielded by an iron yoke. The coils and yoke are fully immersed in a helium vessel. The optimized structural design, stress and quench simulation, fabrication and test results are presented in this paper.
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.
Resumo:
Bond covalency and valence of elements in HgBa2Can-1CunO2n+2+delta (n = 1, 2, 3, 4) were calculated and their relationship with T-c was discussed. For both oxygen and argon annealed samples, the results indicated that with the increase of n, the trend of bond covalency of Hg-O and Cu-O was the same or opposite compared with that of superconducting temperature. This may suggest that the magnitudes of Cu-O and Hg-O bond covalency are important in governing the superconducting temperature. For the highest T-c sample, Hg had the lowest valence, implying that lower valence of Hg was preferred in order to produce higher T-c. For fixed n, the valence of Cu in oxygen annealed samples was larger than that in argon annealed samples, indicating that oxygen annealed samples produced more carriers than argon annealed samples.
Dependence of superconducting temperature on chemical bond parameters in YBa2Cu3O6+delta (delta=0-1)
Resumo:
The chemical bond parameters, that is ionicities and average energy gaps, for all types of chemical bonds in YBa2Cu3O6+delta have been investigated with variation of oxygen content delta (delta = 0.0, 0.35, 0.45, 0.58, 0.64, 0.73, 0.78, 0.81, 0.95, 1.00). The theory used is the complex crystal chemical bond theory, which is the development of P-V-L theory. The two plateaus near 90 K and 60 K in superconducting transition temperatures, and the disappearance of superconductivity with the change of oxygen content, were reasonably explained by chemical bond parameters. The results also showed that the Cu-O chains play a vital role in the transition from non-superconductors to superconductors, and the highest transition temperature occurred when the plane-chain reached a coupling state. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Changes induced in the crystal structure of PTFE by irradiation at different temperatures have been investigated. In the dose and temperature range examined, the density of PTFE was observed to increase continuously with increasing dose due to the radiation-induced increase in crystallinity, while after post-irradiation annealing at 380-degrees-C, the density was observed to increase for samples irradiated at 20-degrees-C, and to begin to decrease after a certain dose for samples irradiated at 150 and 200-degrees-C. On the basis of the observation of radiation-induced separation of the melting peak of PTFE and its stability relative to the change in the rate of heating, the observed decrease in density was explained as being due to the radiation-induced crosslinking and/or branching inhibiting the process of crystallization and existing in the crystalline region as defects.