265 resultados para Strain Localization
Resumo:
The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd2+-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution. (C) 2008 Published by Elsevier Inc.
Resumo:
Microsatellites have become the preferred molecular markers for strain selection and genetic breeding in fish. In this study a total of 105 microsatellites were isolated and identified in gibel carp (Carassius auratus gibelio) by microsatellite sequence searches in GenBank and other databases and by screening and sequencing of positive clones from the genomic library enriched for AG and GATA repeats. Moreover, nineteen microsatellites were randomly selected to design locus-specific primer pairs, and these were successfully used to identify and discriminate different cultured strains of gibel carp including strains A, D, L, and F. Three different types of microsatellite pattern were distinguished by the number and length of fragments amplified from the 19 primer pairs, and some microsatellite primer pairs were found to produce different microsatellite patterns among strains and strain-specific fragments. In addition, some duplicated alleles were also detected in two microsatellite patterns. Therefore, the current study provides direct molecular markers to discriminate among different cultured strains for selective breeding and aquaculture practice of gibel carp.
Resumo:
A birnavirus strain, Paralichthys olivaceus birnavirus (POBV), was isolated and characterized from cultured flounder in China, and its complete genomic sequence was subsequently determined. The virus could induce cytopathic effects (CPE) in four of seven fish cell lines and was resistant to chloroform, 5-iodo-2'-deoxyuridine, acid and alkaline pH, and heat treatment. Purified virus particles had a typical icosahedral shape, with a diameter of approximately 55-60 nm. The genomic segments A and B of POBV were 3,091 and 2,780 bp in length and shared many of the features of the members of the family Birnaviridae. Segment A contained two partially overlapping ORFs encoding a polyprotein, pVP2-VP4-VP3, and a nonstructural protein, VP5, while segment B had only one ORF encoding for the VP1, a viral RNA-dependent RNA polymerase (RdRp). This is the first report about a birnavirus strain from a new non-salmonid host in China and its complete genome sequence.
Resumo:
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5 degrees C) in the dark but rapidly losses viability when exposed to chill in the light (100 mu mol photons m(-2) s(-1)). Preconditioning at a low temperature (15 degrees C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of alpha-tocopherol after exposure to chill-light stress. Mutants unable to synthesize alpha-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from P-petE controlled the level of et-tocopherol and ACLT. We conclude that alpha-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of a-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.
Resumo:
Interferon (IFN)-regulatory transcription factor-1 (IRF-1) has been studied in mammals and fish but little is known about the relationship between its gene structure and nuclear 'ion of IRF-1 protein. In this study, a cDNA encoding Carassius auratus IRF-1 (CaIRF-1) was isolated from an interferon-producing cell line, C. ouratus blastulae embryonic (CAB) cells, exposed to UV-inactivated grass carp hemorrhagic virus (GCHV). The CaIRF-1 genomic locus exhibits exon-intron arrangements similar to those of other vertebrate IRF-1 loci, with nine exons and eight introns, although together with pufferfish IRF-1, CaIRF-1 distinguishes itself from other vertebrate IRF-1 genes by a relatively compact genomic size. Similar to the known IRF-1 genes, CaIRF-1 is ubiquitously expressed, and is upregulated in vitro and in vivo in response to virus, Poty I:C, or CAB INF-containing supernatant (ICS). Subcellular localization analysis confirms the nuclear distribution of CaIRF-1 protein, and reveals two nuclear localization signals (NILS), any one of which is sufficient for nuclear translocation of CaIRF-1. One NLS Locates to amino acids 117-146, and appears to be the structural and functional equivalent of the NLS in mammalian IRF-1. The second NLS (amino acids 73-115) is found within the DNA-binding domain (DBD) of CaIRF-1, and contains two regions rich in basic amino acids (''(KDKSINK101)-K-95" and ''(75)KTWKANFR(82)"). In comparison with mammalian IRF-1, in which the corresponding amino acid stretch does not seem to drive nuclear translocation, five conserved basic amino acids (K-75, K-78, R-82, K-95, and K-101) and one non-conserved basic amino acid (K-97) are present in this NLS from CaIRF-1. This observation suggests that K97 Of CaIRF-1 might be essential for the function of its second NLS, wherein the six basic aminoacids might cooperate to drive CaIRF-1 to the nucleus. Therefore, the current study has revealed a new nuclear localization motif in the DBD of a vertebrate IRF-1. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Wild-type Anabaena sp. strain PCC 7120, a filamentous nitrogen-fixing cyanobacterium, produces single heterocysts at semi-regular intervals. asr0100 (patU5) and alr0101 (patU3) are homologous to the 5' and 3' portions of patU of Nostoc punctiforme. alr0099 (hetZ) overlaps the 5' end of patU5. hetZ, patU5 and patU3 were all upregulated, or expressed specifically, in proheterocysts and heterocysts. Mutants of hetZ showed delayed or no heterocyst differentiation. In contrast, a patU3 mutation produced a multiple contiguous heterocyst (Mch) phenotype and restored the formation of otherwise lost intercalary heterocysts in a patA background. Decreasing the expression of patU3 greatly increased the frequency of heterocysts in a mini-patS strain. Two promoter regions and two principal, corresponding transcripts were detected in the hetZ-patU5-patU3 region. Transcription of hetZ was upregulated in a hetZ mutant and downregulated in a patU3 mutant. When mutants hetZ::C.K2 and hetZ::Tn5-1087b were nitrogen-deprived, P-hetC-gfp was very weakly expressed, and in hetZ::Tn5-1087b, P-hetR-gfp was relatively strongly expressed in cells that had neither a regular pattern nor altered morphology. We conclude that the hetZ-patU5-patU3 cluster plays an important role in co-ordination of heterocyst differentiation and pattern formation. The presence of homologous clusters in filamentous genera without heterocysts is suggestive of a more general role.
Resumo:
During maturation, heterocysts form an envelope layer of polysaccharide, called heterocyst envelope polysaccharide (HEP), whose synthesis depends on a cluster of genes, the HEP island, and on an additional, distant gene, hepB, or a gene immediately downstream from hepB. We show that HEP formation depends upon the predicted glycosyl transferase genes all4160 at a third locus and alr3699, which is adjacent to hepB and is cotranscribed with it. Mutations in the histidine kinase genes hepN and hepK appear to silence the promoter of hepB and incompletely down-regulate all4160.
Resumo:
The cDNA encoding grass carp intelectin was isolated from a head kidney cDNA library, and termed gcIntL. The deduced amino acid sequence of gcIntL consists of 318 amino acids, and about 55% identical and 74% similar to human intelectin, which is a new type of lectin recognizing galactofuranose, and plays a role in the recognition of bacteria-specific components in animal hosts. The gcIntL gene consists of seven exons and six introns, spacing over approximately 3 kb of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcIntL formed a clade with Danio rerio intelectin and 35 kDa serum lectin. By real-time quantitative RT-PCR analysis, gcIntL transcripts were significantly induced in head kidney, trunk kidney, spleen, and intestine from LPS-stimulated fish. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcIntL gene have the same expression pattern, and both were detected in brain, gill, intestine, head kidney, trunk kidney, spleen, and heart. Furthermore, gcIntL protein could be detected in gill, intestine, trunk kidney, head kidney, spleen, heart, and brain including medulla oblongata and optic lobe, as determined by immunohistochemistry. This is the first report of intelectin expression pattern in fish, and of recombinant gcIntL and polyclonal antibody against gcIntL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, to understand the roles of amorphous structures which were observed within the viromatrix of Rana grylio virus (RGV), an improved immunoelectron microscopy (IEM) method was developed to detect the localization of RGV in carp Epithelipma papulosum cyprinid (EPC) cells. Infected EPC cells were fixed with 4% paraformaldehyde-0.25% glutaraldehyde mixture, dehydrated completely, and embedded in LR White resin. This method allowed good ultrastructural preservation and specific labeling with anti-RGV antibodies. The results of IEM showed that colloidal gold mainly bound to the capsids of viral particles at the stage of viral assembly, while during the viral maturation colloidal gold bound to the envelop of virions. In addition, within the viromatrix, the amorphous structures, including dense floccules, membranous materials and tubules, also had strong colloidal gold signals, revealing that those amorphous structures were participated in RGV assembly. In contrast, no significant gold labeling signals were obtained in negative controls. The present study not only provided further evidence that amorphous structures within the viromatrix were involved in the process of RGV assembly, but also developed an improved IEM method for studying the interaction between iridovirus and host cells. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
Resumo:
5S ribosomal DNA (rDNA) was isolated and sequenced from the gibel carp Carassius auratus gibelio with 162 chromosomes and crucian carp Carassius auratus with 100 chromosomes, and fluorescent probes for chromosome localization were prepared to ascertain the ploidy origin and evolutionary relationship between the two species. Using fluorescence in-situ hybridization (FISH), major 5S rDNA signals were localized to the short arms of three subtelocentric chromosomes in the gibel carp and to the short arms of two subtelocentrics in the crucian carp. In addition, some minor signals were detected on other chromosomes of both species. Simultaneously, six chromosomes were microdissected from the gibel carp metaphase spreads using glass needles, and the isolated chromosomes were amplified in vitro by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). Significantly, when the DOP-PCR-generated probes prepared from each single chromosome were hybridized, three same-sized chromosomes were painted in each gibel carp metaphase, whereas only two painted chromosomes were observed in each crucian carp metaphase spread. The data indicate that gibel carp is of triploid origin in comparison with diploid crucian carp.
Resumo:
The dibenzofuran (DF)-degrading bacterium, Janibacter terrae strain XJ-1, was isolated from sediment from East Lake in Wuhan, China. This strain grows aerobically on DF as the sole source of carbon and energy; it has a doubling time of 12 hours at 30 degrees C; and it almost completely degraded 100 mg/L-1 DF in 5 days, producing 2,2',3-trihydroxybiphenyl, salicylic acid, gentisic acid, and other metabolites. The dbdA (DF dioxygenase) gene cluster in the strain is almost identical to that on a large plasmid in Terrabacter sp. YK3. Unlike Janibacter sp. strain YY-1, XJ-1 accumulates gentisic acid rather than catechol as a final product of DF degradation.
Resumo:
Unlike those of the wild-type strain, proheterocysts of the Anabaena sp. strain PCC 7120 hetC strain keep dividing. ftsZ, the most critical cell division gene, is up-regulated in hetC proheterocysts. Heterocyst differentiation genes hglD, hglE, patB, nijB, and xisA are no longer expressed in the hetC mutant. hetC also regulates the expression of patA, a pattern formation gene.
Resumo:
During the twentieth century evidence was presented which suggested the presence of various strains and races of the parasite Ichthyophthirius multifiliis Fouquet. However, ecological profiles of various parasite isolates from different climatic zones are sparse. Such stringent characterizations of parasite development at defined abiotic conditions could provide valuable criteria for the different races: profile comparison from various localities is one way to differentiate these strains. Baseline investigations were therefore performed on the associations between abiotic factors (temperature/salinity) and the development of theronts in tomocysts of I. multifiliis isolated from rainbow trout in a Danish trout farm. It was shown that tomocyst formation and theront development took place between 5 and 30degreesC. Development rates and sizes of theronts were clearly affected by temperature: theronts escaped tomocysts already after 16-27 h at 25degreesC and 30degreesC, whereas this process took 8-9 days at 5degreesC. Likewise, theront size decreased steadily from a maximum of 57.4 x 28.6 mum at 5degreesC to 28.6 x 20.0 mum at 30degreesC. This size variation was only partly associated with the number of theronts that appeared at different temperatures. The lowest number of theronts escaping from one tomocyst was indeed found at 5-7degreesC (mean 329-413). At 11.6, 17.0 and 21degreesC. the highest number of theronts appeared (mean 546-642). However, at 25 and 30degreesC, the number decreased (458 and 424, respectively). Additional studies on the salinity dependent development of the parasite (at 11.6degreesC) showed that salinities above 5 p.p.t. totally inhibited development. Even at 5 p.p.t. the developmental time significantly increased and the number of theronts produced from one tomocyst decreased.
Resumo:
A mutant of Anabaena sp. strain PCC7120 requiring high CO2 was generated using Tn5 mutagenesis. This is the first data for a filamentous cyanobacterium. The mutant was capable of growing at 5% CO2, but incapable of growing at air levels of CO2. Southern hybridization analysis indicated that the Anabaena genome was inserted by the transposon at one site. The apparent photosynthetic affinity of the mutant to external dissolved inorganic carbon (DIC) was about 300 times lower that of the wild type (WT), and the medium alkalization rate as well as the carboxysomal carbonic anhydrase activity of the mutant was also lower than those of the WT. When the mutant was transferred from the culture medium bubbled with 5% CO2 to higher DIC (8.4% CO2) or 1% CO2, it showed similar responses to the WT. However, aberrant carboxysomes were found in the mutant cells through ultrastructural analysis, indicating it was most probably the wrong organization of the carboxysomes that eventually led to the inefficient operation of carboxysomal carbonic anhydrase and the subsequent defectiveness of the mutant in utilizing DIC.