241 resultados para South Orange
Resumo:
Relative paleointensity records from the northern South China Sea, northwest Pacific Ocean were studied in two gravity piston cores. Continuous mineral magnetic and paleomagnetic measurements were made using discrete sediment samples. Detailed rock magnetic parameters, such as thermomagnetic and high-field hysteresis data, indicate that pseudo-single domain magnetite in a narrow range of grain-size and concentration is the main contributor to the remanent magnetization. The uniform magnetic mineralogy meets the commonly accepted criteria for establishing relative paleointensity records. The relative paleointensity (RPI) curves were constructed by normalizing the natural remanent magnetization (NRM) with isothermal remanent magnetization (IRM), both in the 20-60 mT demagnetization state. Dating constraints have been provided by radiocarbon ages in the upper 400 cm of both cores. Furthermore, we have correlated our paleointensity records with NAPIS-75, S.Atlantic-1089, Sint-200 and NOPAPIS-250 to determine the chronological RPI framework for the South China Sea (SCS-PIS). Although some temporal offsets of paleointensity features between the different records have been recognized, their similar shape suggests that relative paleointensity on the 10(3)-10(4) year scale is globally coherent and can provide an age framework for sediments independent of delta O-18 ages.
Resumo:
Based on the comprehensive interpretation and study of the Neogene fracture system and diapiric structure, it can be concluded that the diapiric structures, high-angle fractures and vertical fissure system are the main gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, northern South China Sea. The Neogene fractures widely developed in the study area may be classed into two groups: NW (NNW)-trending and NE (NNE)-trending. The first group was active in the Late Miocene, while the second one was active since the Pliocene. The NE (NNE)-trending fractures were characterized by lower activity strength and larger scale, and cut through the sediment layers deposited since the Pliocene. Within the top sediment layers, the high-angle fracture and vertical fissure system was developed. The diapiric structures display various types such as a turtle-back-like arch, weak piercing, gas chimney, and fracture (or crack, fissure). On the seismic profile, some diapiric structures show the vertical chimney pathway whose top is narrow and the bottom is wide, where some ones extend horizontally into pocket or flower-shaped structures and formed the seismic reflection chaotic zones. Within the overlying sediment layers of the diapiric structure, the tree branch, flower-shaped high-angle fractures and vertical fissures were developed and became the pathway and migration system of the gas-bearing fluid influx. In the study area, the diapiric structures indicate a high temperature/over pressure system ever developed. Closely associated and abundant bright-spots show the methane-bearing fluid influx migrated vertically or horizontally through the diapiric structures, high-angle fractures and vertical fissures. In the place where the temperature and pressure conditions were favor for the formation of gas hydrate, the hydrate reservoir deposition sub-system was developed.
Resumo:
The occurrences of diapirs, gas-filled zones and gas plumes in seawater in Qiongdongnan Basin of South China Sea indicate that there may exist seepage system gas-hydrate reservoirs. Assuming there has a methane venting zone of 1500 m in diameter, and the methane flux is 1000 kmol/a, and the temperature of methane hydrate-bearing sediments ranges from 3 degrees C to 20 degrees C, then according to the hydrate film growth theory, by numerical simulation, this paper computes the temperatures and velocities in 0 mbsf, 100 mbsf, 200 mbsf, 425 mbsf over discrete length, and gives the change charts. The results show that the cementation velocity in sediments matrix of methane hydrate is about 0.2 nm/s, and the seepage system will evolve into diffusion system over probably 35000 years. Meanwhile, the methane hydrate growth velocity in leakage system is 20 similar to 40 times faster than in diffusion system.