278 resultados para Solani Ag-8
Resumo:
This paper presents an 8-bit low power cascaded folding and interpolating analog-to-digital converter (ADC). A reduction in the number of comparators, equal to the number of times the signal is folded, is obtained. The interleaved architecture is used to improve the sampling rate of the ADC. The circuit including a bandgap is implemented in a 0.18-mu m CMOS technology, and measures 1.47 mm X 1.47 mm (including pads). The simulation results illustrate a conversion rate of 1-GSamples/s and a power dissipation of less than 290mW.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T07:15:25Z No. of bitstreams: 1 张伟--波长 8 μm分布反馈量子级联激光器的研究.pdf: 39254721 bytes, checksum: f62d5575b2849ea4ec14ec33e78dd9f6 (MD5)
Resumo:
Surface and bulk plasmon resonance of noble metal particles play an essential role in the multicolor photochromism of semiconductor systems containing noble metal particles, Here we examined several key parameters affecting surface plasmon resonance wavelength (SPRW) of Ag particles and investigated the relation between surface plasmon and photochromic reaction wavelength. From the transmission spectra of sandwiched (TiO2/Ag/TiO2) and overcoated (Ag/TiO2) films deposited on quartz substrates at room temperature by rf helicon magnetron sputtering, we demonstrated that the SPRW can be made tunable by changing the surrounding media and thickness of the metal layer. The coloration and bleaching in visible light region due to photochromism were clearly observed for the films inserted with a 0.55 nm Ag layer.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
We report on the utilization of localized surface plasmon resonance (LSPR) of Ag nanoparticles to tailor the optical properties Of VO2 thin film. Interaction of nano-Ag with incident light yields a salient absorption band in the visible-near IR region and modifies the spectrum Of VO2 locally. The wavelength of modification occurs in a limited spectral region rather than affects the full spectrum. The wavelength of modification shows a strong dependence on the metal nanoparticle size and shifts toward the red as the particle size or the mass thickness of nano-Ag increases. Also, we found that the wavelength can be shifted into the IR further by introducing a thin layer of TiO2 onto the nano-Ag. Interestingly, with the help of LSPR effects the VO2 film exhibits an anomalous thermochromic behavior in the modification wavelength region, which may be useful in optical switching applications.
Resumo:
Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Plasmon resonance spectra of supported Ag nanoparticles are studied by depositing the particles on different substrates. It was found that the dielectric properties of the substrates have significant effects on the spectral line shape, except the resonance frequency. Beyond the plasmon resonance band, the spectral shape is mainly governed by the dielectric function, particularly its imaginary part, of the substrate. The plasmon resonance band, on the other hand, may be severely distorted if the substrate is absorbing strongly.
Resumo:
!"#$%&’(!&%"!:%&%")*
Resumo:
银纳米晶体掺杂的高非线性石英光纤的全光转换应用
Are there any 3.8 Ga rock at Anshan in the North China Craton?–Reply to comments on by Nutman et al.