156 resultados para Shaanxi earthquake


Relevância:

10.00% 10.00%

Publicador:

Resumo:

陕北黄土丘陵沟壑区 ,生态环境脆弱 ,水土流失严重 ,作为环境脆弱带的山坡生产型道路 ,对加剧土壤侵蚀起着重要的作用 ,属等外路。人们并不很重视的山坡生产型道路却与农村生产运输、经济交流密切相关 ,其建设与维护具有重要意义。通过对延安黄土丘陵沟壑区山坡生产型道路侵蚀状况调查及对道路防蚀建设的经验 ,总结了现有山坡道路侵蚀现状、方式、影响因素 ,并从生物、工程两方面初步阐述防蚀措施的配置与设计

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对陕西省部分县 (市 )的 2 0 a~ 40 a的潜在蒸发量和降水量的分析 ,研究了他们在时间上的相关性和随机特性 ,结果认为潜在蒸发量无论是均值还是方差都在时间上具有很高的相关性 ,而降水量的均值在时间上具有分段相关性 ,而方差不具相关性 ,通过进一步检验 ,潜在蒸发量在时间上属于 AR( 1 )模型。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对陕北黄土高原可持续发展评价指标体系和方法的初步研究 ,设计出了包括 1个高级综合指标——可持续发展综合指数、人口状况等 5个基本指标和人口自然增长率等 30个元素指标的层次性指标体系结构框架 ,熵技术支持下确定可持续发展指标权重的层次分析法 ,以及由递阶多层次综合评价、主成份分析和回归分析等数学方法所集成的可持续发展全面综合评价模型 ,并依次对该地区可持续发展现状及趋势进行了全面分析评价

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据陕北黄土高原农牧交错带生态环境特点以及作物生长发育过程对光、热、水、土资源的要求和利用效率,运用逐步订正法对该地区的土地生产潜力进行了定量估算,并对其土地的人口承载力进行了计算与分析,指出了提高该地区土地生产潜力及人口承载力的途径。结果表明,该地区光温生产潜力为光合生产潜力的65.21%,气候生产潜力为光温生产潜力的37.91%,土壤生产潜力为气候生产潜力的32.19%,现实生产能力仅为土壤生产潜力的42.47%;在现实生产能力水平下,人民生活仅能维持我国低消费水平,如果要实现世界中等消费水平,必须使土地的现实生产能力达到土壤生产潜力的89.40%,气候生产潜力的27.00%。提高该地区土地生产潜力及人口承载力的途径包括提高植被覆盖度,控制土地荒漠化;发展设施农业和灌溉农业,提高作物产量;改进施肥方法,培肥地力;因地制宜,开发滩区等。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了陕北农牧交错带荒漠化土地上种植人工植被后,在不同的植被恢复类型和生长状态下土壤物理、化学和生物学性状的特征。结果表明,随着人工植被的建立与生长,土壤肥力总体趋于好转,土壤理化性质得到显著改善,土壤质地变细,微生物数量增加,土壤酶活性增强;同时,使流动沙地向半固定、固定沙丘方向转化。但随着植被盖度和植被种类的不同,不同样地土壤肥力差异很大;多年生乔木林改良土壤肥力的潜力最高,耕作粗放的农地土壤肥力有所下降。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对陕北黄土高原日光温室大棚蔬菜黄瓜、大青菜、油麦菜和西芹进行了叶面喷施富万钾有机钾肥的田间试验研究。结果表明,在日光温室大棚蔬菜上施用有机钾肥,黄瓜植株高度、叶片数、茎粗、叶面积、瓜长均增加。大青菜的茎粗增长44%。油麦菜的株高、茎粗、地上植株、地下根重、总生物量均明显增加。西芹的株高、茎粗、地上植株、地下根重以及总生物量增加。富万钾有机钾肥能明显促进蔬菜生长,提高产量。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

依据在陕西安塞进行的田间试验,研究了黄土丘陵旱农区传统翻耕和免耕及化肥和有机肥对玉米光合速率和气孔导度的影响。结果表明,免耕措施下玉米的光合速率、气孔导度、水分利用效率均高于传统翻耕,气孔导度的日变化与光合速率显著相关。在黄土丘陵区实施免耕既有利于作物对有限降水的高效利用,提高作物产量,也可促进农田系统生产力可持续提高。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

National Key Basic Research and Development Program of China [2006CB701305]; State Key Laboratory of Resource and Environment Information System [088RA400SA]; Chinese Academy of Sciences

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the world-wide zoogeographic division, there has been no consentaneous understanding about the delimitation between palaearctic and oriental realms in western China. In this study, we will discuss the division based on amphibian distribution in Shaanxi, Gansu, Sichuan, Yunnan, and Tibet according to species coefficient similarity between each zoogeographic province. The results show that the northern border lies from Qinling Mountains-Feng Xian (Shaanxi)-Debu (Gansu)-Aba (Sichuan)-Batang-Bomi (Tibet), to Linzhi districts, and the southern border is from Taibai-Feng Xian in Shaanxi-Wen Xian (Gansu)-Songpan-Kangding-Daocheng (Sichuan), to Zhongdian-Gongshan in Yunnan, and westward to Motuo and Bomi district in Tibet. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability and derailment behavior analysis of railway vehicle system has been discussed by many papers in the past. In stability, give first place to consider hunting behavior of vehicle, therefore most of papers was only consider lateral and yaw motion, but vertical motion is the important factor in derailment behavior, and it will be quite effect in stability. We will probe the running stability and derailment behavior of railway vehicle moving on the viaduct in this paper. In this paper, we use Nadal’s formula to get the derailment quotient. In this paper, the railway vehicle is considered to be three subsystems, carbody, bogie and wheelset. There are secondary suspension systems between carbody and bogies, and primary suspension systems connecting bogies and wheelsets. A vehicle with vertical, lateral, roll, and yaw directions motion is considered to derive the mathematical equations. A vehicle with three-dimensional model has 16 degrees of freedom is used to develop the equations of train motion. In this study, results show that the track shift force and derailment factor increase with an increase of ground acceleration. But for the track shift force and derailment factor, the effects of track irregularities and train speed are very small. Key words: earthquake, railway vehicle, viaduct, derailment factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prediction of Carbonate Reservoir Based on the Elastic Parameter Analysis Zhang Guangzhi (Solid Geophysics) Directed by Professor Liu Hong Abstract With the exploration and development of Puguang Oilfield, oil-gas exploration of carbonate rock in China has shown good prospects. Research on earthquake prediction methods for carbonate reservoir becomes the key of oil and gas exploration. Starting with analysis of geological characteristics of carbonate rock, prestack AVO inversion method, prestack elastic impedance inversion and parameter calculation method and seismic attribute extraction and optimization method were studied based on the analysis of rock physics in this work. First, variation characteristic and law of carbonate rock reservoir parameters were studied based on experimental data of rock physics, log data, analysis assay data, mud logging data and seismic data, so as to lay a foundation for the further reservoir identification and description. Then, the structure, type and propagation law of seismic wave field were analyzed through seismic forward modeling of the reservoir, and contact between information from log and geology data with elastic parameters, such as compressional wave and shear wave velocity and density were established, so as to provide a standard for reservoir identification and hydrocarbon detection using seismic reflection characteristics of the research area. Starting with the general concept of inverse problem, through analysis of Zoeppritz equation, three kinds of pre-stack inversion methods were derived and analyzed in detail, the AVO 3-parameter inversion based on Bayesian theory, the prestack AVO waveform inversion method and the simultaneous inversion method, based on the statistical hypothesis of inversion parameters and observation data and the Gauss distribution assumption of noise. The three methods were validated by model data and real data. Then, the elastic wave impedance inversion method of carbonate reservoir was investigated and the method of elastic parameter extraction from elastic impedance data was put forward. Based on the analysis of conventional methods of seismic attribute extraction and optimization, the time-frequency attributes and the wavelet attributes with time and amplitude feature were presented, and the prestack seismic attribute calculation method which can characterize the reservoir rock and fluid characteristic was presented. And the optimization of seismic attribute using the nonlinear KPCA method was also put forward. A series of seismic prediction technologies for carbonate reservoir were presented based on analysis of rock physics and seismic forward simulation technology. Practical application of these technologies was implemented in A oil field of Southern China and good effect has been achieved. Key words: carbonate rock; reservoir prediction; rock physics, prestack seismic inversion; seismic attribute

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tien Shan is the most prominent intracontinental mountain belt on the earth. The active crustal deformation and earthquake activities provide an excellent place to study the continental geodynamics of intracontinental mountain belt. The studies of deep structures in crust and upper mantle are significantly meaningful for understanding the geological evolution and geodynamics of global intracontinental mountain belts. This dissertation focuses on the deep structures and geodynamics in the crust and upper mantle in the Tien Shan mountain belt. With the arrival time data from permanent and temporal seismic stations located in the western and central Tien Shan, using seismic travel time tomographic method, we inversed the P-wave velocity and Vp/Vs structures in the crust and uppermost mantle, the Pn and Sn velocities and Pn anisotropic structures in the uppermost mantle, and the P-wave velocity structures in the crust and mantle deep to 690km depth beneath the Tien Shan. The tomographic results suggest that the deep structures and geodynamics have significant impacts not only on the deformations and earthquake activities in the crust, but also on the mountain building, collision, and dynamics of the whole Tien Shan mountain belt. With the strongly collision and deformations in the crust, the 3-D P-wave velocity and Vp/Vs ratio structures are highly complex. The Pn and Sn velocities in the uppermost mantle beneath the Tien Shan, specially beneath the central Tien Shan, are significantly lower than the seismic wavespeed beneath geological stable regions. We infer that the hot upper mantle from the small-scale convection could elevate the temperature in the lower crust and uppermost mantle, and partially melt the materials in the lower crust. The observations of low P-wave and S-wave velocities, high Vp/Vs ratios near the Moho and the absences of earthquake activities in the lower crust are consistent with this inference. Based on teleseismic tomography images of the upper mantle beneath the Tien Shan, we infer that the lithosphere beneath the Tarim basin has subducted under the Tien Shan to depths as great as 500 km. The lithosphere beneath the Kazakh shield may have subducted to similar depths in the opposite direction, but the limited resolution of this data set makes this inference less certain. These images support the plate boundary model of converge for the Tien Shan, as the lithospheres to the north and south of the range both appear to behave as plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress change is one of key factors in seismic nucleating and triggering; therefore for understanding and forecasting earthquakes, it is necessary to research on stress status and its changes in rocks. Propagating in underground structures, wave velocity and attenuation contain information on stress changes of the Earth’s interior. For a better understanding of relationship between seismic data and stress changes, modeling and ultrasonic test supply significant references. In this article, acoustoelastic theory is introduced to explain nonlinear elastic characteristics of rocks. Based on the acoustoelastic theory, a solid-fluid coupled model is given to calculate velocity under different stress for porous and liquid fulfilled rocks. Except for the stress-velocity relationship, effects of pore pressure induced stress changes on ultrasonic coda attenuation are also studied. Intrinsic attenuation quality factors are calculated for a comparison purpose. Finally, the relationship between elastic constants and stress changes is thoroughly investigated, a mixture model from two phases of Hooke media is introduced to explain the differences between dynamic and static moduli, a relation among wave length, wave velocities and elastic moduli considering dimension of microstructure, dimension and state of surface between phases is presented. The most important aspect of this work is exploring and establishing relationships between the seismic properties of rocks and changes of their stress conditions, which will have its application in earthquake forecast and seismic hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.